首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of neutrally evolving sequences suggest that differences in eukaryotic genome sizes result from different rates of DNA loss. However, very few pseudogenes have been identified in microbial species, and the processes whereby genes and genomes deteriorate in bacteria remain largely unresolved. The typhus-causing agent, Rickettsia prowazekii, is exceptional in that as much as 24% of its 1.1-Mb genome consists of noncoding DNA and pseudogenes. To test the hypothesis that the noncoding DNA in the R. prowazekii genome represents degraded remnants of ancestral genes, we systematically examined all of the identified pseudogenes and their flanking sequences in three additional Rickettsia species. Consistent with the hypothesis, we observe sequence similarities between genes and pseudogenes in one species and intergenic DNA in another species. We show that the frequencies and average sizes of deletions are larger than insertions in neutrally evolving pseudogene sequences. Our results suggest that inactivated genetic material in the Rickettsia genomes deteriorates spontaneously due to a mutation bias for deletions and that the noncoding sequences represent DNA in the final stages of this degenerative process.  相似文献   

2.
Several studies have demonstrated high levels of sequence conservation in noncoding DNA compared between two species (e.g., human and mouse), and interpreted this conservation as evidence for functional constraints. If this interpretation is correct, it suggests the existence of a hidden class of abundant regulatory elements. However, much of the noncoding sequence conserved between two species may result from chance or from small-scale heterogeneity in mutation rates. Stronger inferences are expected from sequence comparisons using more than two taxa, and by testing for spatial patterns of conservation in addition to primary sequence similarity. We used a Bayesian local alignment method to compare approximately 10 kb of intron sequence from nine genes in a pairwise manner between human, whale, and seal to test whether the degree and pattern of conservation is consistent with neutral divergence. Comparison of the three sets of conserved gapless pairwise blocks revealed the following patterns: The proportion of identical intron nucleotides averaged 47% in pairwise comparisons and 28% across the three taxa. Proportions of conserved sequence were similar in unique sequence and general mammalian repetitive elements. We simulated sequence evolution under a neutral model using published estimates of substitution rate heterogeneity for noncoding DNA and found pairwise identity at 33% and three-taxon identity at 16% of nucleotide sites. Spatial patterns of primary sequence conservation were also nonrandomly distributed within introns. Overall, segments of intron sequence closer to flanking exons were significantly more conserved than interior intron sequence. This level of intron sequence conservation is above that expected by chance and strongly suggests that intron sequences are playing a larger functional role in gene regulation than previously realized.  相似文献   

3.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

4.
Length Mutations in Human Mitochondrial DNA   总被引:42,自引:8,他引:42  
R. L. Cann  A. C. Wilson 《Genetics》1983,104(4):699-711
By high-resolution, restriction mapping of mitochondrial DNAs purified from 112 human individuals, we have identified 14 length variants caused by small additions and deletions (from about 6 to 14 base pairs in length). Three of the 14 length differences are due to mutations at two locations within the D loop, whereas the remaining 11 occur at seven sites that are probably within other noncoding sequences and at junctions between coding sequences. In five of the nine regions of length polymorphism, there is a sequence of five cytosines in a row, this sequence being comparatively rare in coding DNA. Phylogenetic analysis indicates that, in most of the polymorphic regions, a given length mutation has arisen several times independently in different human lineages. The average rate at which length mutations have been arising and surviving in the human species is estimated to be many times higher for noncoding mtDNA than for noncoding nuclear DNA. The mystery of why vertebrate mtDNA is more prone than nuclear DNA to evolve by point mutation is now compounded by the discovery of a similar bias toward rapid evolution by length mutation.  相似文献   

5.
The calculation of probabilities of nucleotide sequences from the frequencies of dinucleotides is described. The dinucleotide and mononucleotide frequencies used can be obtained from nearest neighbor analysis or from databank sequences. If dinucleotide and mononucleotide frequencies from nearest neighbor analysis are used, probabilities for oligonucleotides can be calculated for genomes in which there is little or no sequence data. Within a given genome, a broad range of probabilities for hexanucleotide palindromes with the same base composition is predicted and shown (14).  相似文献   

6.
Forward mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) in the tetracycline resistance gene carried on plasmid pBR322 are shown to be dependent upon the induction of the host SOS functions in wild-type and umuC Escherichia coli cells. The mutation frequency in the umuC strain is equal to about 40% of the mutation frequency observed in the umu+ background. In the excision-repair-deficient uvrA mutant strain the mutagenic response is the same as in SOS-induced wild-type cells whether or not the uvrA bacteria are SOS-induced. Equal mutation frequencies are obtained in both the wild-type and the uvrA strains for equal modification levels although the survival of AAF-modified plasmid DNA is greatly reduced in the uvrA strain as compared to the wild-type strain. Sequence analysis of the mutations reveals that more than 90% of the N-Aco-AAF-induced mutations are frameshift mutations. Two types of mutational hotspots are observed occurring either at repetitive sequences or at non-repetitive sequences. Both types of mutants appear at similar locations and frequencies in both the wild-type and the uvrA strains. On the other hand, only the non-repetitive sequence mutants are obtained in the umuC background. These non-repetitive sequence mutants preferentially occur within the sequence 5' G-G-C-G-C-C 3' (the NarI restriction enzyme recognition sequence). The analysis of the -AAF binding spectrum to the same DNA fragment shows that there is no direct correlation between the modification spectrum and the mutation spectrum. We suggest that certain sequences are "mutation-prone" in the sense that only these sequences can be efficiently mutated as the result of an active processing mediated by specific proteins. When a sequence is said to be mutation-prone it probably corresponds to a particular structure that is induced within this sequence as a result of the binding to the DNA of the mutagen. This sequence-specific conformational change is the substrate for the protein(s) that fixes the mutation. The mutagenic processing pathway(s) is part of the cellular response to DNA-damaging agents (the so-called SOS response). Two pathways for frameshift mutagenesis are suggested by the data: an umuC-dependent pathway, which is involved in the mutagenic processing of lesions within repetitive sequences; an umuC-independent pathway responsible for the fixation of mutations within specific non-repetitive sequences.  相似文献   

7.
T.L. Sitnikova  A.A. Zharkikh   《Bio Systems》1993,30(1-3):113-135
This work is an attempt to study the structural features and evolutionary patterns of nucleotide sequences by analyzing their 1- through 4-plet frequencies and statistical relations between them. We present mathematical apparatus for this analysis. In particular, we introduce criteria to estimate the degree of homogeneity of L-plet composition in a given set of sequences and the dependence of the L-plet frequencies on the composition of lower orders. We apply these criteria to the study of eubacteria, mitochondria and chloroplasts. We demonstrate that L-plet frequencies are quite useful for revealing evolutionary relationship between DNA sequences and that the non-random distribution is more typical for doublets than to triplets. Non-randomness of triplet composition is more characteristic to coding than to non-coding regions, while no significant differences in dinucleotide composition can be observed. The obtained results can be used for revealing possible mechanisms of the codon usage phenomena.  相似文献   

8.
Early biochemical experiments measuring nearest neighbor frequencies established that the set of dinucleotide relative abundance values (dinucleotide biases) is a remarkably stable property of the DNA of an organism. Analyses of currently available genomic sequence data have extended these earlier results, showing that the dinucleotide biases evaluated for successive 50 kb segments of a genome are significantly more similar to each other than to those of sequences from more distant organisms. From this perspective, the set of dinucleotide biases constitutes a 'genomic signature' that can discriminate sequences from different organisms. The dinucleotide biases appear to reflect species-specific properties of DNA stacking energies, modification, replication, and repair mechanisms. The genomic signature is useful for detecting pathogenicity islands in bacterial genomes.  相似文献   

9.
A Markov analysis of DNA sequences   总被引:12,自引:0,他引:12  
We present a model by which we look at the DNA sequence as a Markov process. It has been suggested by several workers that some basic biological or chemical features of nucleic acids stand behind the frequencies of dinucleotides (doublets) in these chains. Comparing patterns of doublet frequencies in DNA of different organisms was shown to be a fruitful approach to some phylogenetic questions (Russel & Subak-Sharpe, 1977). Grantham (1978) formulated mRNA sequence indices, some of which involve certain doublet frequencies. He suggested that using these indices may provide indications of the molecular constraints existing during gene evolution. Nussinov (1981) has shown that a set of dinucleotide preference rules holds consistently for eukaryotes, and suggested a strong correlation between these rules and degenerate codon usage. Gruenbaum, Cedar & Razin (1982) found that methylation in eukaryotic DNA occurs exclusively at C-G sites. Important biological information thus seems to be contained in the doublet frequencies. One of the basic questions to be asked (the "correlation question") is to what extent are the 64 trinucleotide (triplet) frequencies measured in a sequence determined by the 16 doublet frequencies in the same sequence. The DNA is described here as a Markov process, with the nucleotides being outcomes of a sequence generator. Answering the correlation question mentioned above means finding the order of the Markov process. The difficulty is that natural sequences are of finite length, and statistical noise is quite strong. We show that even for a 16000 nucleotide long sequence (like that of the human mitochondrial genome) the finite length effect cannot be neglected. Using the Markov chain model, the correlation between doublet and triplet frequencies can, however, be determined even for finite sequences, taking proper account of the finite length. Two natural DNA sequences, the human mitochondrial genome and the SV40 DNA, are analysed as examples of the method.  相似文献   

10.
The evolutionary history of genes can be used to examine patterns of spontaneous mutation if the sequences are sufficiently extensive to provide reliable data. Many human alpha-interferon genes have been sequenced and they form a large multigene family including several pseudogenes. A phylogenetic history for 15 human interferon sequences was reconstructed and their ancestral sequences inferred using a maximum parsimony method. This evolutionary history provided a record of more than 738 spontaneous mutations that have occurred in man's recent evolution. Of these mutations, more than 267 base substitution and deletion-insertion events were analyzed to determine the possible effects of nearby DNA sequences. Many substitutions occur at the end of long runs of identical bases and some dinucleotide pairs may mutate more often than others. Because templating by local DNA sequences has been implicated in prokaryotic mutation, the sequences were also examined for nearby repeats that include the substituted nucleotide and hence are potentially capable of templating the substitution. The majority of sequence alterations examined have either a similar direct repeat or palindrome nearby. Often such templates can account for simultaneous multiple mutations. These results suggest that sequence-directed events may occur occasionally in eukaryotes and that neighbouring DNA sequences can influence both the occurrence and types of mutations in several different ways.  相似文献   

11.
Nucleosome formation and positioning, which play important roles in a number of biological processes, are thought to be related to the distinctive periodic dinucleotide patterns observed in the DNA sequence wrapped around the protein octamer. Previous research shows that flexibility is a key structural property of a nucleosomal DNA sequence. However, the relationship between the flexibility and the periodic dinucleotide patterns has received little attention in research in the past. In this study, we propose the use of three different models to measure the flexibility of yeast DNA sequences. Although the three models involve different parameters, they deliver consistent results showing that yeast nucleosomal DNA sequences are more flexible than non-nucleosomal ones. In contrast to random flexibility values along non-nucleosomal DNA sequences, the flexibility of nucleosomal DNA sequences shows a clear periodicity of 10.14 base pairs, which is consistent with the periodicity of dinucleotide distributions. We also demonstrate that there is a strong relationship between the peak positions of the flexibility and the dinucleotide frequencies. Correlation between the flexibility and the dinucleotide patterns of CA/TG, CG, GC, GG/CC, AG/CT, AC/GT and GA/TC are positive with an average value of 0.5946. The highest correlation is shown by CA/TG with a value of 0.7438 and the lowest correlation is shown by AA/TT with a value of −0.7424. The source codes and data sets are available for downloading on http://www.hy8.com/bioinformatics.htm.  相似文献   

12.
A significant part of eukaryotic noncoding DNA is viewed as the passive result of mutational processes, such as the proliferation of mobile elements. However, sequences lacking an immediate utility can nonetheless play a major role in the long-term evolvability of a lineage, for instance by promoting genomic rearrangements. They could thus be subject to an indirect selection. Yet, such a long-term effect is difficult to isolate either in vivo or in vitro. Here, by performing in silico experimental evolution, we demonstrate that, under low mutation rates, the indirect selection of variability promotes the accumulation of noncoding sequences: Even in the absence of self-replicating elements and mutational bias, noncoding sequences constituted an important fraction of the evolved genome because the indirectly selected genomes were those that were variable enough to discover beneficial mutations. On the other hand, high mutation rates lead to compact genomes, much like the viral ones, although no selective cost of genome size was applied: The indirectly selected genomes were those that were small enough for the genetic information to be reliably transmitted. Thus, the spontaneous evolution of the amount of noncoding DNA strongly depends on the mutation rate. Our results suggest the existence of an additional pressure on the amount of noncoding DNA, namely the indirect selection of an appropriate trade-off between the fidelity of the transmission of the genetic information and the exploration of the mutational neighborhood. Interestingly, this trade-off resulted robustly in the accumulation of noncoding DNA so that the best individual leaves one offspring without mutation (or only neutral ones) per generation.  相似文献   

13.
Drosophila ananassae is a cosmopolitan species with a geographic range throughout most of the tropical and subtropical regions of the world. Previous studies of DNA sequence polymorphism in three genes has shown evidence of selection affecting broad expanses of the genome in regions with low rates of recombination in geographically local populations in and around India. The studies suggest that extensive physical and genetic maps based on molecular markers, and detailed studies of population structure may provide insight into the degree to which natural selection affects DNA sequence polymorphism across broad regions of chromosomes. We have isolated 85 dinucleotide repeat microsatellite sequences and developed assay conditions for genotyping using PCR. The dinucleotide repeats we isolated are shorter, on average, than those isolated in many other Drosophila species. Levels of genetic variation are high, comparable to Drosophila melanogaster. The levels of variation indicate the effective population size of an Indonesian population of D. ananassae is 58,692 (infinite allele model) and 217,284 (stepwise mutation model), similar to estimates of effective population size for D. melanogaster calculated using dinucleotide repeat microsatellites. The data also show that the Indonesian population is in a rapid expansion phase. Cross-species amplification of the microsatellites in 11 species from the Ananassae, Elegans, Eugracilis and Ficusphila subgroups indicates that the loci may be useful for studies of the sister species, D. pallidosa, but will have limited use for more distantly related species.  相似文献   

14.
Microsatellite DNA sequences are ubiquitous in the human genome, and mutation rates of these repetitive sequences vary with respect to DNA sequence as well as length. We have analyzed polymerase-DNA interactions as a function of microsatellite sequence, using polypyrimidine/polypurine di- and tetranucleotide alleles representative of those found in the human genome. Using an in vitro primer extension assay and the mammalian DNA polymerase alpha-primase complex, we have observed a polymerase termination profile for each microsatellite that is unique to that allele. Interestingly, a periodic termination profile with an interval size (9-11 nucleotides) unrelated to microsatellite unit length was observed for the [TC](20) and [TTCC](9) templates. In contrast, a unit-punctuated polymerase termination profile was found for the longer polypurine templates. We detected strong polymerase pauses within the [TC](20) allele at low reaction pH which were eliminated by the addition of deaza-dGTP, consistent with these specific pauses being a consequence of triplex DNA formation during DNA synthesis. Quantitatively, a strand bias was observed in the primer extension assay, in that polymerase synthesis termination is more intense when the polypurine sequence serves as the template, relative to its complementary polypyrimidine sequence. The HSV-tk forward mutation assay was utilized to determine the corresponding polymerase alpha-primase error frequencies and specificities at the microsatellite alleles. A higher microsatellite polymerase error frequency (50x10(-4) to 60x10(-4)) was measured when polypurine sequences serve as templates for DNA synthesis, relative to the polypyrimidine template (18x10(-4)). Thus, a positive correlation exists between polymerase alpha-primase pausing and mutagenesis within microsatellite DNA alleles.  相似文献   

15.
Some aspects of microsatellite evolution, such as the role of base substitutions, are far from being fully understood. To examine the significance of base substitutions underlying the evolution of microsatellites we explored the nature and the distribution of interruptions in dinucleotide repeats from the human genome. The frequencies that we inferred in the repetitive sequences were statistically different from the frequencies observed in other noncoding sequences. Additionally, we detected that the interruptions tended to be towards the ends of the microsatellites and 5'-3' asymmetry. In all the estimates nucleotides forming the same repetitive motif seem to be affected by different base substitution rates in AC and AG. This tendency itself could generate patterning and similarity in flanking sequences and reconcile these phenomena with the high mutation rate found in flanking sequences without invoking convergent evolution. Nevertheless, our data suggest that there is a regional bias in the substitution pattern of microsatellites. The accumulation of random substitutions alone cannot explain the heterogeneity and the asymmetry of interruptions found in this study or the relative frequency of different compound microsatellites in the human genome. Therefore, we cannot rule out the possibility of a mutational bias leading to convergent or parallel evolution in flanking sequences.  相似文献   

16.
Eckert KA  Mowery A  Hile SE 《Biochemistry》2002,41(33):10490-10498
Mutations arising in microsatellite DNA are associated with neurological diseases and cancer. To elucidate the molecular basis of microsatellite mutation, we have determined the in vitro polymerase error frequencies at microsatellite sequences representative of those found in the human genome: [GT/CA](10), [TC/AG](11), and [TTCC/AAGG](9). DNA templates contained the microsatellites inserted in-frame into the 5' region of the herpes simplex virus thymidine kinase (HSV-tk) gene. Polymerase beta (polbeta) error frequencies were quantitated in microsatellite sequences, relative to frame-shift error frequencies in coding sequences, from the same DNA synthesis reaction. The polbeta error frequencies within the dinucleotide sequences were (2-9) x 10(-3), 14-72-fold higher than the ssDNA template frequencies. The polbeta error frequencies within the tetranucleotide sequences were (4-6) x 10(-3), a 4-13-fold increase over background. Strand biases were observed for the [TC/AG](11) and [TTCC/AAGG](9) alleles, in which more errors were produced when the purine strand served as a template. Mutations within each microsatellite included noncanonical base substitution events and single nucleotide deletions as well as the expected unit length changes. An exponential relationship was observed between the polymerase error frequency per site and both the number of repetitive units and total length of the allele. Our observations are consistent with the strand slippage model of microsatellite mutagenesis and demonstrate that DNA sequence and/or structural differences result in mutational strand biases. To our knowledge, this is the first direct quantitation of DNA polymerase errors in vitro using template microsatellite sequences.  相似文献   

17.
A Major Role for Bacteriophage T4 DNA Polymerase in Frameshift Mutagenesis   总被引:6,自引:2,他引:4  
T4 DNA polymerase strongly influences the frequency and specificity of frameshift mutagenesis. Fifteen of 19 temperature-sensitive alleles of the DNA polymerase gene substantially influenced the reversion frequencies of frameshift mutations measured in the T4 rII genes. Most polymerase mutants increased frameshift frequencies, but a few alleles (previously noted as antimutators for base substitution mutations) decreased the frequencies of certain frameshifts while increasing the frequencies of others. The various patterns of enhanced or decreased frameshift mutation frequencies suggest that T4 DNA polymerase is likely to play a variety of roles in the metabolic events leading to frameshift mutation. A detailed genetic study of the specificity of the mutator properties of three DNA polymerase alleles (tsL56, tsL98 and tsL88) demonstrated that each produces a distinctive frameshift spectrum. Differences in frameshift frequencies at similar DNA sequences within the rII genes, the influence of mutant polymerase alleles on these frequencies, and the presence or absence of the dinucleotide sequence associated with initiation of Okazaki pieces at the frameshift site has led us to suggest that the discontinuities associated with discontinuous DNA replication may contribute to spontaneous frameshift mutation frequencies in T4.  相似文献   

18.
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.  相似文献   

19.
Evolution of chromosome bands: Molecular ecology of noncoding DNA   总被引:25,自引:0,他引:25  
Summary Giemsa dark bands, G-bands, are a derived chromatin character that evolved along the chromosomes of early chordates. They are facultative heterochromatin reflecting acquisition of a late replication mechanism to repress tissue-specific genes. Subsequently, R-bands, the primitive chromatin state, became directionally GC rich as evidenced by Q-banding of mammalian and avian chromosomes. Contrary to predictions from the neutral mutation theory, noncoding DNA is positionally constrained along the banding pattern with short interspersed repeats in R-bands and long interspersed repeats in G-bands. Chromosomes seem dynamically stable: the banding pattern and gene arrangement along several human and murine autosomes has remained constant for 100 million years, whereas much of the noncoding DNA, especially retroposons, has changed. Several coding sequence attributes and probably mutation rates are determined more by where a gene lives than by what it does. R-band exons in homeotherms but not G-band exons have directionally acquired GC-rich wobble bases and the corresponding codon usage: CpG islands in mammals are specific to R-band exons, exons not facultatively heterochromatinized, and are independent of the tissue expression pattern of the gene. The dynamic organization of noncoding DNA suggests a feedback loop that could influence codon usage and stabilize the chromosome’s chromatin pattern: DNA sequences determine affinities of → proteins that together form → a chromatin that modulates → rate constants for DNA modification that determine → DNA sequences. Theories of hierarchical selection and molecular ecology show how selection can act on Darwinian units of noncoding DNA at the genome level thus creating positionally constrained DNA and contributing minimal genetic load at the individual level. Presented in part at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

20.
Trypanosomatid mitochondrial DNA (kDNA) possesses thousands of copies of small circular molecules called minicircles. Due to a high level of nucleotide polymorphism among copies, sequence alignment for species or strain characterization is not appropriate. In this work we report dinucleotide absolute frequency as a method to analyze minicircle sequences heterogeneity in trypanosomatids. Using Trypanosoma rangeli and Leishmania guyanensis minicircles as example of sequence length heterogeneity, we show that dinucleotide frequency of minicircles whose length variation is less than to 10% is relatively constant. Dinucleotide frequencies in Leishmania genus point out three clusters of predominant dinucleotide profiles: GG/TT/TG for Old World species; ii) TT/AA/TA for New World species and iii) TT/GG(AA) TA(AT) for Sauroleishmania. Trypanosoma species displayed broad range composition and the highest frequency values. Their dinucleotide profile appears to be species specific, except for African trypanosomes which exhibit similar composition. The low number of sequences from Crithidia, Herpetomonas, Phytomonas and Wallaceina did not allow a generalized analysis, however some species present highly similar compositional profile, e.g., Wallaceina species. Distinct signatures for Trypanosomatidae family members can be generated by using values of absolute frequencies, range and composition of most/least frequent dinucleotides from minicircles. Each species can be graphically represented by a diagram of frequencies along with a box plot of summary statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号