首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huarte N  Lorizate M  Kunert R  Nieva JL 《FEBS letters》2008,582(27):3798-3804
The conserved, aromatic-rich membrane-proximal external region (MPER) of gp41 is functional in human immunodeficiency virus (HIV)-cell fusion by perturbing membrane integrity. Broadly-neutralizing 2F5 and 4E10 monoclonal antibodies (MAb-s) recognize amino- and carboxy-terminal epitope sequences within this domain, respectively. An MPER peptide overlapping 2F5 and 4E10 epitope sequences was capable of breaching the permeability barrier of lipid vesicles. Cholesterol and sphingomyelin raft-lipids, present at high quantities in the HIV-1 envelope, promoted exposure or occlusion of 4E10 epitope, respectively. Conversely, 2F5 epitope accessibility was affected to a lesser extent by these envelope lipids. These observations support the idea that MPER epitopes on membranes are segmented in terms of how they are affected by envelope lipids, which may have implications for MPER-based vaccine development.  相似文献   

2.
The conserved membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of two broadly neutralizing human monoclonal antibodies, 2F5 and 4E10, and is an important lead for vaccine design. However, immunogens that bear MPER epitopes so far have not elicited neutralizing antibodies in laboratory animals. One explanation is that the immunogens fail to recreate the proper molecular environment in which the epitopes of 2F5 and 4E10 are presented on the virus. To explore this molecular environment, we used alanine-scanning mutagenesis across residues 660 to 680 in the MPER of a pseudotyped variant of HIV-1(JR-FL), designated HIV-1(JR2), and examined the ability of 2F5 and 4E10 to neutralize the Ala mutant viruses. The results show that the only changes to produce neutralization resistance to 2F5 occurred in residue D, K, or W of the core epitope (LELDKWANL). Likewise, 4E10 resistance arose by replacing one of three residues; two (W and F) were in the core epitope, and one (W) was seven residues C-terminal to these two (NWFDISNWLW). Importantly, no single substitution resulted in resistance of virus to both 2F5 and 4E10. Surprisingly, 8 out of 21 MPER Ala mutants were more sensitive than the parental pseudovirus to 2F5 and/or 4E10. At most, only small differences in neutralization sensitivity to anti-gp120 monoclonal antibody b12 and peptide T20 were observed with the MPER Ala mutant pseudoviruses. These data suggest that MPER substitutions can act locally and enhance the neutralizing activity of antibodies to this region and imply a distinct role of the MPER of gp41 during HIV-1 envelope-mediated fusion. Neutralization experiments showing synergy between and T20 and 4E10 against HIV-1 are also presented. The data presented may aid in the design of antigens that better present the MPER of gp41 to the immune system.  相似文献   

3.
The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformation as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.  相似文献   

4.
On the prereceptor-engaged HIV-1 envelope glycoprotein (Env) spike, epitope access by the membrane-proximal external region (MPER)-directed broadly neutralizing antibodies 2F5 and 4E10 remains unresolved. Data on binding to cell surface Env and entry data using primary isolates suggest inaccessibility of the 2F5 and 4E10 epitopes on the viral spike prior to receptor engagement, but trimer gel shift analysis and slow kinetics of shedding induced by 2F5 and 4E10 indicate otherwise. Therefore, it remains unclear if the epitopes themselves are formed in their antibody-bound state (or at least sampled) prior to receptor/coreceptor engagement or if receptor interactions both expose and form the MPER epitopes, presumably in the putative prefusion transitional intermediate. Here, we performed antibody-virus "washout experiments" using both lab-adapted and a panel of clade B primary isolates to analyze MPER accessibility. The neutralization activity of 2F5 and 4E10 against lab-adapted viruses and sensitive and moderately resistant viruses was largely unaffected by relatively rapid antibody-virus washing, suggesting direct interaction with the "static" spike. However, for more neutralization-resistant viruses, the 2F5 and 4E10 antibodies could neutralize only under the "no antibody-virus wash" conditions, implying that the MPER epitopes were not accessible prior to receptor engagement. Accessibility in the washout conditions could be precisely predicted by the relative resistance to neutralization in a standard neutralization format. These data are consistent with a model in which the local MPER antibody epitope conformations may be sampled on the native spike but are occluded to antibody by local steric or distal quaternary constraints adopted by highly resistant HIV-1 isolates.  相似文献   

5.
The broadly neutralizing monoclonal antibody (MAb) 4E10 recognizes a linear epitope in the C terminus of the membrane-proximal external region (MPER) of gp41. This epitope is particularly attractive for vaccine design because it is highly conserved among human immunodeficiency virus type 1 (HIV-1) strains and neutralization escape in vivo has not been observed. Multiple env genes were cloned from an HIV-1 subtype C virus isolated from a 7-year-old perinatally infected child who had anti-MPER neutralizing antibodies. One clone (TM20.13) was resistant to 4E10 neutralization as a result of an F673L substitution in the MPER. Frequency analysis showed that F673L was present in 33% of the viral variants and in all cases was linked to the presence of an intact 2F5 epitope. Two other envelope clones were sensitive to 4E10 neutralization, but TM20.5 was 10-fold less sensitive than TM20.6. Substitutions at positions 674 and 677 within the MPER rendered TM20.5 more sensitive to 4E10 but had no effect on TM20.6. Using chimeric and mutant constructs of these two variants, we further demonstrated that the lentivirus lytic peptide-2 domain in the cytoplasmic tail affected the accessibility of the 4E10 epitope, as well as virus infectivity. Collectively, these genetic changes in the face of a neutralizing antibody response to the MPER strongly suggested immune escape from antibody responses targeting this region.  相似文献   

6.
The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.  相似文献   

7.
Noah E  Biron Z  Naider F  Arshava B  Anglister J 《Biochemistry》2008,47(26):6782-6792
The HIV-1 envelope glycoprotein gp41 undergoes a sequence of extensive conformational changes while participating in the fusion of the virus with the host cell. Since the discovery of its postfusion conformation, the structure and function of the protease-resistant six-helix bundle (6-HB) have been the subject of extensive investigation. In this work, we describe additional determinants (S528-Q540 and W666-N677) in the fusion peptide proximal region (FP-PR) and the membrane proximal external region (MPER) that stabilize the six-helix bundle and are involved in the interaction of T-20 (FUZEON, an anti-HIV-1 fusion inhibitor drug) with the gp41 FP-PR. Circular dichroism and sedimentation equilibrium measurements indicate that the 1:1 mixture of N' and C' peptides comprising residues A541-T569 and I635-K665 from the gp41 first and second helical repeats, HR1 and HR2, respectively, fail to form a stable six-helix bundle. Triglutamic acid and triarginine tags were added to these N' and C' peptides, respectively, at the termini distant from the FP-PR and the MPER to alter their pI and increase their solubility at pH 3.5. The tagged HR1 and HR2 peptides were elongated by addition of residues S528-Q540 from the FP-PR and residues W666-N677 from the MPER, respectively. A 1:1 complex of the elongated peptides formed a stable six-helix bundle which melted at 60 degrees C. These results underscore the importance of a detailed high-resolution characterization of MPER interactions, the results of which may improve our understanding of the structure-function relationship of gp41 and its role in HIV-1 fusion.  相似文献   

8.
Induction of broadly neutralizing antibodies (bNAbs) is an important goal for HIV-1 vaccine development. Two autoreactive bNAbs, 2F5 and 4E10, recognize a conserved region on the HIV-1 envelope glycoprotein gp41 adjacent to the viral membrane known as the membrane-proximal external region (MPER). They block viral infection by targeting a fusion-intermediate conformation of gp41, assisted by an additional interaction with the viral membrane. Another MPER-specific antibody, 10E8, has recently been reported to neutralize HIV-1 with potency and breadth much greater than those of 2F5 or 4E10, but it appeared not to bind phospholipids and might target the untriggered envelope spikes, raising the hope that the MPER could be harnessed for vaccine design without major immunological concerns. Here, we show by three independent approaches that 10E8 indeed binds lipid bilayers through two hydrophobic residues in its CDR H3 (third heavy-chain complementarity-determining region). Its weak affinity for membranes in general and preference for cholesterol-rich membranes may account for its great neutralization potency, as it is less likely than other MPER-specific antibodies to bind cellular membranes nonspecifically. 10E8 binds with high affinity to a construct mimicking the fusion intermediate of gp41 but fails to recognize the envelope trimers representing the untriggered conformation. Moreover, we can improve the potency of 4E10 without affecting its binding to gp41 by a modification of its lipid-interacting CDR H3. These results reveal a general mechanism of HIV-1 neutralization by MPER-specific antibodies that involves interactions with viral lipids.  相似文献   

9.
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.  相似文献   

10.
C-peptides derived from the HIV envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (C-HR) region are potent HIV fusion inhibitors. These peptides interact with the gp41 N-terminal heptad repeat (N-HR) region and block the gp41 six-helix bundle formation that is required for fusion. However, the parameters that govern this inhibition have yet to be elucidated. We address this issue by comparing the ability of C34, derived from HIV-1, HIV-2 and SIV gp41, to inhibit HIV-1, HIV-2 and SIV envelope-mediated fusion and the ability of these peptides to form stable six-helix bundles with N36 peptides derived from gp41 of these three viruses. The ability to form six-helix bundles was examined by circular dichroism spectroscopy, and HIV/SIV Env-mediated membrane fusion was monitored by a dye transfer assay. HIV-1 N36 formed stable helix bundles with HIV-1, HIV-2 and SIV C34, which all inhibited HIV-1 Env-mediated fusion at IC(50)<10nM. The three C34 peptides were poor inhibitors of HIV-2 and SIV fusion (IC(50)>100nM), although HIV-2 and SIV N36 formed stable helix bundles with SIV C34. Priming experiments with sCD4 indicate that, in contrast to HIV-1, HIV-2 and SIV Env do not expose their N-HR region to SIV C34 following CD4 binding, but rapidly proceed to co-receptor engagement and six-helix bundle formation resulting in fusion. Our results suggest that several factors, including six-helix bundle stability and the ability of CD4 to destabilize the envelope glycoprotein, serve as determinants of sensitivity to entry inhibitors.  相似文献   

11.
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.  相似文献   

12.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

13.
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.  相似文献   

14.
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER.  相似文献   

15.
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41int-Cys) and show that it folds into an elongated ∼12-nm-long extended structure based on small angle x-ray scattering data. Gp41int-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41int-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140CA018 in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140CA018 was higher than that induced by gp41int-Cys, the majority of animals immunized with gp41int-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.  相似文献   

16.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

17.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

18.
Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide dC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While dC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1alpha to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of dC13 implies additional mode(s) of action. These results suggest that dC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5 degrees C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37 degrees C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37 degrees C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37 degrees C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37 degrees C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.  相似文献   

20.
The conserved membrane proximal external region (MPER), adjacent to the transmembrane domain (TMD) of human immunodeficiency virus type-1 (HIV-1) gp41 glycoprotein subunit, is accessible to the broadly neutralizing 4E10 and 2F5 monoclonal antibodies (mAbs) and, therefore, constitutes a potential target for vaccine design. This gp41 domain is postulated to be functional during the Env glycoprotein-mediated fusion reaction by destabilizing the highly rigid viral envelope. To perform this task, the aromatic-rich MPER is believed to insert into the interfacial region of the viral membrane external monolayer, thereby inducing the restructuring of the lipid bilayer required for fusion-pore opening. This model predicts that: (i) 2F5 and 4E10 mAbs are capable of binding epitopes inserted into the membrane interface; (ii) in-membrane binding will result in effective blocking of MPER membrane activity; and (iii) both processes, in-membrane recognition and blocking of membrane activity, can be modulated by altering both the lipid composition and the MPER amino acid sequence. We review here recently reported experimental data consistent with those predictions, and further speculate on their relevance for prospective anti-HIV vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号