首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
When phospholipid vesicles bound to a planar membrane are osmotically swollen, they develop a hydrostatic pressure (delta P) and fuse with the membrane. We have calculated the steady-state delta P, from the equations of irreversible thermodynamics governing water and solute flows, for two general methods of osmotic swelling. In the first method, vesicles are swollen by adding a solute to the vesicle-containing compartment to make it hyperosmotic. delta P is determined by the vesicle membrane's permeabilities to solute and water. If the vesicle membrane is devoid of open channels, then delta P is zero. When the vesicle membrane contains open channels, then delta P peaks at a channel density unique to the solute permeability properties of both the channel and the membrane. The solute enters the vesicle through the channels but leaks out through the region of vesicle-planar membrane contact. delta P is largest for channels having high permeabilities to the solute and for solutes with low membrane permeabilities in the contact region. The model predicts the following order of solutes producing pressures of decreasing magnitude: KCl greater than urea greater than formamide greater than or equal to ethylene glycol. Differences between osmoticants quantitatively depend on the solute permeability of the channel and the density of channels in the vesicle membrane. The order of effectiveness is the same as that experimentally observed for solutes promoting fusion. Therefore, delta P drives fusion. When channels with small permeabilities are used, coupling between solute and water flows within the channel has a significant effect on delta P. In the second method, an impermeant solute bathing the vesicles is isosmotically replaced by a solute which permeates the channels in the vesicle membrane. delta P resulting from this method is much less sensitive to the permeabilities of the channel and membrane to the solute. delta P approaches the theoretical limit set by the concentration of the impermeant solute.  相似文献   

3.
Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.  相似文献   

4.
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.  相似文献   

5.
Methylation of aquaporins in plant plasma membrane   总被引:2,自引:0,他引:2  
A thorough analysis, using MS, of aquaporins expressed in plant root PM (plasma membrane) was performed, with the objective of revealing novel post-translational regulations. Here we show that the N-terminal tail of PIP (PM intrinsic protein) aquaporins can exhibit multiple modifications and is differentially processed between members of the PIP1 and PIP2 subclasses. Thus the initiating methionine was acetylated or cleaved in native PIP1 and PIP2 isoforms respectively. In addition, several residues were detected to be methylated in PIP2 aquaporins. Lys3 and Glu6 of PIP2;1, one of the most abundant aquaporins in the PM, occurred as di- and mono-methylated residues respectively. Ectopic expression in Arabidopsis suspension cells of PIP2;1, either wild-type or with altered methylation sites, revealed an interplay between methylation at the two sites. Measurements of water transport in PM vesicles purified from these cells suggested that PIP2;1 methylation does not interfere with the aquaporin intrinsic water permeability. In conclusion, the present study identifies methylation as a novel post-translational modification of aquaporins, and even plant membrane proteins, and may represent a critical advance towards the identification of new regulatory mechanisms of membrane transport.  相似文献   

6.
Molecular mechanisms of urea transport in plants   总被引:1,自引:0,他引:1  
Urea is a soil nitrogen form available to plant roots and a secondary nitrogen metabolite liberated in plant cells. Based on growth complementation of yeast mutants and “in-silico analysis”, two plant families have been identified and partially characterized that mediate membrane transport of urea in heterologous expression systems. AtDUR3 is a single Arabidopsis gene belonging to the sodium solute symporter family that cotransports urea with protons at high affinity, while members of the tonoplast intrinsic protein (TIP) subfamily of aquaporins transport urea in a channel-like manner. The following review summarizes current knowledge on the membrane localization, energetization and regulation of these two types of urea transporters and discusses their possible physiological roles in planta.  相似文献   

7.
Regulation of plant aquaporin activity   总被引:21,自引:0,他引:21  
Accumulating evidence indicates that aquaporins play a key role in plant water relations. Plant aquaporins are part of a large and highly divergent protein family that can be divided into four subfamilies according to amino acid sequence similarity. As in other organisms, plant aquaporins facilitate the transcellular movement of water, but, in some cases, also the flux of small neutral solutes across a cellular membrane. Plant cell membranes are characterized by a large range of osmotic water permeabilities, and recent data indicate that plant aquaporin activity might be regulated by gating mechanisms. The factors affecting the gating behaviour possibly involve phosphorylation, heteromerization, pH, Ca2+, pressure, solute gradients and temperature. Regulation of aquaporin trafficking may also represent a way to modulate membrane water permeability. The aim of this review is to integrate recent molecular and biophysical data on the mechanisms regulating aquaporin activity in plant membranes and to relate them to putative changes in protein structure.  相似文献   

8.
The osmotic water permeability ( P os) of cell membranes isolated from leaves of 40-, 50- and 60-day-old Mesembryanthemum crystallinum plants was estimated by measuring light-scattering kinetics using stopped-flow spectrophotometry. The measurements were performed on the plasma membrane (PM), purified tonoplast (TP), and TP-enriched vesicles. The PM and TP-enriched vesicles were obtained by partitioning the microsomal fraction in an aqueous polymer two-phase system, whereas the purified TP vesicles were prepared by microsomal vesicle flotation on a sucrose cushion. The P os of isolated membranes declined with plant age. The kinetic experiments showed that there was no difference between the P os of the PM and TP isolated from plants of all ages. A 24-h exposure of plants to 400 m M NaCl caused a decline in the P os as well. These findings suggest that, during M. crystallinum transition to CAM, which was induced by plant ageing or salinity, plant osmoregulatory responses included changes in the P os of the leaf-cell membranes. These variations in the P os are discussed in the context of adaptive mechanisms responsible for the maintenance of the water balance in the common ice plant.  相似文献   

9.
BACKGROUND INFORMATION: The MIPs (major intrinsic proteins) constitute a large family of membrane proteins that facilitate the passive transport of water and small neutral solutes across cell membranes. Since water is the most abundant molecule in all living organisms, the discovery of selective water-transporting channels called AQPs (aquaporins) has led to new knowledge on both the physiological and molecular mechanisms of membrane permeability. The MIPs are identified in Archaea, Bacteria and Eukaryota, and the rapid accumulation of new sequences in the database provides an opportunity for large-scale analysis, to identify functional and/or structural signatures or to infer evolutionary relationships. To help perform such an analysis, we have developed MIPDB (database for MIP proteins), a relational database dedicated to members of the MIP family. RESULTS: MIPDB is a motif-oriented database that integrates data on 785 MIP proteins from more than 200 organisms and contains 230 distinct sequence motifs. MIPDB proposes the classification of MIP proteins into three functional subgroups: AQPs, glycerol-uptake facilitators and aquaglyceroporins. Plant MIPs are classified into three specific subgroups according to their subcellular distribution in the plasma membrane, tonoplast or the symbiosome membrane. Some motifs of the database are highly selective and can be used to predict the transport function or subcellular localization of unknown MIP proteins. CONCLUSIONS: MIPDB offers a user-friendly and intuitive interface for a rapid and easy access to MIP resources and to sequence analysis tools. MIPDB is a web application, publicly accessible at http://idefix.univ-rennes1.fr:8080/Prot/index.html.  相似文献   

10.
Plant aquaporins   总被引:1,自引:0,他引:1  
  相似文献   

11.
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins.  相似文献   

12.
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today’s MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker’s yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.  相似文献   

13.
Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.  相似文献   

14.

Background  

The major intrinsic proteins (MIPs) facilitate the transport of water and neutral solutes across the lipid bilayers. Plant MIPs are believed to be important in cell division and expansion and in water transport properties in response to environmental conditions. More than 30 MIP sequences have been identified in Arabidopsis thaliana, maize and rice. Plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), Nod26-like intrinsic protein (NIPs) and small and basic intrinsic proteins (SIPs) are subfamilies of plant MIPs. Despite sequence diversity, all the experimentally determined structures belonging to the MIP superfamily have the same "hour-glass" fold.  相似文献   

15.
Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 +/- 4 mum.s-1 (25 degrees C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 +/- 5 mum.s-1 (25 degrees C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 +/- 4 mum.s-1; -25%) and canalicular (59 +/- 4 mum.s-1; -30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 +/- 135 mum.s-1, 25 degrees C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.  相似文献   

16.
The membranes of plant and animal cells contain aquaporins, proteins that facilitate the transport of water. In plants, aquaporins are found in the vacuolar membrane (tonoplast) and the plasma membrane. Many aquaporins are mercury sensitive, and in AQP1, a mercury-sensitive cysteine residue (Cys-189) is present adjacent to a conserved Asn-Pro-Ala motif. Here, we report the molecular analysis of a new Arabidopsis aquaporin, delta-TIP (for tonoplast intrinsic protein), and show that it is located in the tonoplast. The water channel activity of delta-TIP is sensitive to mercury. However, the mercury-sensitive cysteine residue found in mammalian aquaporins is not present in delta-TIP, or in gamma-TIP, a previously characterized mercury-sensitive tonoplast aquaporin. Site-directed mutagenesis was used to identify the mercury-sensitive site in these two aquaporins as Cys-116 and Cys-118 for delta-TIP and gamma-TIP, respectively. These mutations are at a conserved position in a presumed membrane-spanning domain not previously known to have a role in aquaporin mercury sensitivity. Comparing the tissue expression patterns of delta-TIP with gamma-TIP and alpha-TIP showed that the TIPs are differentially expressed.  相似文献   

17.
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, nine full-length cDNAs encoding putative aquaporins were isolated from grape berry cDNA libraries. A phylogenetic analysis conducted with 28 aquaporin genes identified in the grapevine genome and previously characterized aquaporins from Arabidopsis indicates that three cDNAs encode putative tonoplast aquaporins (TIPs) whereas six cDNAs belong to the plasma membrane aquaporin subfamily (PIPs). Specific probes designed on the 3' untranslated regions of each cDNA were used for the preparation of cDNA macroarray filters and in situ hybridization experiments. Macroarray data indicate that expression levels of most TIP and PIP genes depend on grape berry developmental stages and point out to a global decrease of aquaporin gene expression during berry ripening. In young berries, high expression of aquaporin genes was preferentially observed in dividing and elongating cells and in cells involved in water and solutes transport. Taken together, the data provided in this paper indicate that aquaporins are implicated in various physiological aspects of grape berry development.  相似文献   

18.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   

19.

Background  

Cotton (Gossypium spp.) is produced in over 30 countries and represents the most important natural fiber in the world. One of the primary factors affecting both the quantity and quality of cotton production is water. A major facilitator of water movement through cell membranes of cotton and other plants are the aquaporin proteins. Aquaporin proteins are present as diverse forms in plants, where they function as transport systems for water and other small molecules. The plant aquaporins belong to the large major intrinsic protein (MIP) family. In higher plants, they consist of five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). Although a great deal is known about aquaporins in plants, very little is known in cotton.  相似文献   

20.
By searching a Chlamydomonas expressed sequence tag database and by comparing the retrieved data with homologous sequences from a DNA database, we identified an expressed Chlamydomonas reinhardtii putative major intrinsic protein (MIP) gene. The nucleotide sequence, consisting of 1,631 bp, contains an open reading frame coding for a 300-amino-acid protein named CrMIP1. It possesses conserved NPA motifs, but is not highly homologous to known aquaporins. CrMIP1 was expressed in Saccharomyces cerevisiae and assayed for water and glycerol transport activity. By the stopped-flow spectrophotometric assay, CrMIP1 did not enhance the osmotic water permeability of membrane vesicles of the yeast transformant. However, the transformant cells showed glycerol transport activity in the in vivo assay using [14C]glycerol. This is the first report on the isolation and functional identification of a MIP member from algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号