首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of bioaugmentation in the improvement of the start-up of a biofilm airlift reactor to perform partial nitrification was investigated. Two identical biofilm airlift reactors were inoculated. The non-bioaugmented reactor (NB-reactor) was inoculated with conventional activated sludge, whereas the bioaugmented reactor (B-reactor) was seeded with the same conventional activated sludge but bioaugmented with nitrifying activated sludge from a pilot plant performing full nitritation under stable conditions (100% oxidation of influent ammonium to nitrite). The fraction of specialized nitrifying activated sludge in the inoculum of the B-reactor was only 6% (measured as dry matter). To simplify comparison of the results, operational parameters were equivalent for both reactors. Partial nitrification was achieved significantly faster in the B-reactor, showing a very stable operation. The results obtained by fluorescence in situ hybridization assays showed that the specialized nitrifying biomass added to the B-reactor remained in the biofilm throughout the start-up period.  相似文献   

2.
Two different anerobic consortia, one removing phenol and ortho (o-) cresol and other removing para(p-) cresol, were cultivated in serum bottles using whey as cosubstrate substitute for proteose peptone. Phenol and p-cresol removal with the phenol-removing consortium were the same with 0.0125% (w/v) whey as with 0.05% proteose peptone. For the other consortium, 8 days were required to decrease the p-cresol concentration from 35 to 2 mg/L with 0.025% whey, while 35 days were required to achieve a similar removal with 0.5% proteose peptone. The two consortia were mixed and cultivated with 0.025% whey. Phenolic compound removal with the mixed consortia was as good as that achieved by each of the two initial consortia against their respective substrates. This removal activity was maintained after several transfers. In a continuous upflow fixed-film reactor, the mixed consortia removed over 98% of 150 mg/L of phenol and 35 mg/L of each o- and p-cresol in the influent at 29 degrees C, with 0.025% whey as cosubstrate. The hydraulic retention time (HRT) was 0.25 day, corresponding to a phenolic compound volumic loading rate of 880 mg/(L of reactor x day). Once the continuous flow reactor achieved constant phenolic compound removal, no intermediates were found in the effluent, while in serum bottles, m-toluic acid, an o-cresol intermediate, accumulated. Measurements of the specific activity for the uptake of different substrates demonstrated the presence of all trophic groups involved in methanogenic fermentation. These activities were, in mg of substrate/(g of volatile suspended solids x day), as follows: 849 +/- 25 for the acidogens; 554 +/- 15 for the acetogens; 934 +/- 37 for the aceticlastic methanogens; and 135 +/- 15 for the hydrogenophilic methanogens. Electron micrographs of the mixed consortia showed seven different morphological bacterial types, including Methanotrix-like bacteria.  相似文献   

3.
4.
The present work evaluates the aerobic removal of 0.25-2 g/L of phenol by adapted activated sludge in batch and continuous reactors, in suspended form and trapped in polymeric hydrogel beads of calcium alginate(1%) and cross-linked poly(N-vinyl pyrrolidone), x-PVP (4%). The mechanical and chemical resistance of the entrapping hydrogel was also evaluated in three different media: (I) rich in phosphate and ammonium ions; (II) using alternate P and N sources, and (III) without nutrients. The adapted consortium removed phenol concentrations up to 2 g/L more efficiently in the immobilized systems. A decrease in phenol removal rate was observed as the food/microorganisms (F/M) ratio increased. A zero-order kinetics was observed with phenol concentrations > 1 g/L and a first-order kinetics at concentrations < 1 g/L. The best response (100% removal) was in the continuous reactors using type II medium, with a hydraulic residence time (HRT) of 12.5 h, an influent pH = 5, and an F/M ratio below 0.25. The immobilizing matrix deteriorated after 170 h of use in continuous reactors, especially with media I and II, probably due to the attrition forces, to chemical weakness of the material, and to the pressure of the bacterial growth inside the bead.  相似文献   

5.
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred.  相似文献   

6.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

7.
Summary Scanning electron microscopy was applied to evaluate the influence of inoculum on efficiency of initial biofilm formation and reactor performance. Five anaerobic fixed-bed reactors were inoculated with anaerobic sludges from different sources and operated in parallel under identical conditions with defined wastewater and acetate, propionate and butyrate as constituents In all sludges Methanothrix sp. was the predominant acetotroph. The reactors inoculated with anaerobic sludge adapted to the wastewater achieved the highest space loading with 21.0 g COD/l·d after 58 days. The inoculation with granular sludge from an upflow anaerobic sludge blanket (UASB) reactor resulted in significantly less reactor efficiency. Time course of biofilm formation and biofilm thickness (ranging from 20–200 m) depended on the type of inoculum.  相似文献   

8.
Summary Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64° C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64° C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36° C and the other predominant at 46° C and above. Offprint requests to: J. B. van Lier  相似文献   

9.
A comparative study between two reactors, one using microorganisms entrapped in calcium alginate gel, and the other using microorganisms attached on the surface of a membrane (polymeric microporous sheeting, MPSTM) to biodegrade phenol is performed. Results indicate that the alginate bead bioreactor is efficient at higher phenol concentrations while the membrane bioreactor shows better performance at lower phenol concentrations. This unique response is primarily attributed to the different techniques by which the microorganisms are immobilized in the two reactors.In batch mode, below a starting concentration of 100 ppm phenol, biodegradation rates in the membrane bioreactor are (7.58 to 12.02 mg phenol/h · g dry biomass) atleast 10 times the rates in alginate bead bioreactor (0.74 to 1.32 mg phenol/h · g dry biomass). Biodegradation rates for the two reactors match at a starting concentration of 250 ppm phenol. Above 500 ppm phenol, the rates in the alginate bead bioreactor are (7.3 to 8.1 mg phenol/h · g dry biomass) on an average 5.5 times the corresponding rates in the membrane bioreactor (2.18 to 1.03 mg phenol/h · g dry biomass).In continuous feed mode the steady state degradation rates in the membrane bioreactor are one to two orders of magnitude higher than the alginate bead bioreactor below 150 ppm inlet phenol concentration. At an inlet concentration around 250 ppm phenol the rates are comparable. Above 500 ppm of phenol the rates in the alginate bioreactor are an order of magnitude high than the membrane bioreactor.Due to substrate inhibition, and its inability to sustain a high biomass concentration, the membrane bioreactor shows poor efficiencies at phenol concentrations above 250 ppm. At low phenol concentrations the apparent reaction rates in the alginate bead bioreactor decrease due to the diffusional resistance of the gel matrix, while biodegradation rates in the membrane bioreactor remain high due to essentially no external diffusional resistance.Results indicate that a combined reactor system can be more effective for bioremediation than either separate or attached microbial reactors.  相似文献   

10.
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.  相似文献   

11.
Enzymatic removal of various phenol compounds from artificial wastewater was undertaken by the combined use of mushroom tyrosinase (EC 1.14.18.1) and chitosan beads as function of pH value, temperature, tyrosinase dose, and hydrogen peroxide-to-substrate ratio. Chitosan film incubated in a p-crersol+tyrosinase mixture had the main peaks at 400-470 nm assigned to chemically adsorbed quinone derivatives, which increased over the immersion time. These results indicate that removal of phenol compounds is caused by their tyrosinase-catalyzed oxidation to the corresponding quinone derivatives and the subsequent chemical adsorption on the chitosan film. The optimum conditions for quinone adsorption were determined to be pH 7 and 45 degrees C for p-cresol. Some alkyl-substituted phenol compounds were removed by adsorption of quinone derivatives enzymatically generated on the chitosan beads, and the % removal for p-cresol, 4-ethylphenol, 4-n-propylphenol, 4-n-butylphenol, and p-chlorophenol went up to 93%. In addition, 4-tert-butylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide. This procedure was applicable to removal of chlorophenols and alkyl-substituted phenols.  相似文献   

12.
Removal of organic material from poultry slaughter wastewater as determined by changes in biological oxygen demand (BOD5) was investigated by adding three different types of inoculum combining cow manure, yeast extract or hydraulic residence time as variables with response vector of reduction of BOD5. In a 3-l reactors, a 95% removal of BOD5 from poultry slaughter wastewater was obtained with organic loading rates up to 31 kg BOD5 m(-3) d(-1) without loss of stability. This 95% removal was obtained between 25 and 39 degrees C with a hydraulic residence time between 3.5 and 4.5 h. The growth of the consortium of micro-organisms in the reactor followed a first-order kinetic with a constant specific growth rate of 0.054 h(-1). It was concluded that an inoculum from cow manure added with nutrients and yeast extract allowed a 95% removal of BOD5 from poultry slaughter wastewater at ambient temperatures within a hydraulic residence time of 4 h, sharply reducing possible environmental hazards.  相似文献   

13.
Two lab-scale anaerobic hybrid reactors (AHR) were operated to investigate the effect of recirculated biogas on the development of biomass on supporting media during the start-up. The reactor comprised of two distinct zones; sludge bed on the bottom and packed bed using nylon fiber as the media on the upper half of the reactor. Both reactors were continuously fed with cassava starch wastewater. The organic loading rate (OLR) was increased from 0.3 to 5.5 g COD/L/day by gradually decreasing the hydraulic retention time (HRT) from 37 to 3.5 days in two months. The biogas at 2.6 L/L/day was recirculated merely in the first month of the operation in order to allow the attached biomass to grow according to the organic matters present in the reactor at the final stage of the start up. Chemical oxygen demand (COD) removal efficiency of over 80% was achieved throughout the study. The result demonstrated a better COD removal efficiency for the reactor with biogas recirculation, especially at low HRTs. The amounts of biomass accumulated on the media in both reactors were slightly different with 11.9 gVSS found on the one with biogas recirculation compared to 9.8 gVSS on the other. In addition, 16.3% increase of the sludge bed was achieved with biogas recirculation as opposed to 9% in the control one. The attached biomass activity test indicated a greater amount and more favorable ratio of the methanogenic bacterial group on the media with the recirculation correlating well to a relatively higher methane content in biogas. As a result, the recirculation of biogas has a potential of improving the characteristics of the AHR especially in terms of biomass accumulation.  相似文献   

14.
Biofilm development on sand with different heterogeneous inocula was studied in laboratory-scale methanogenic fluidized bed reactors. Both the course of biofilm formation during reactor start-up and the bacterial composition of newly developed biofilms at steady-state were found to be similar irrespective of the type of inoculum applied. Biofilm formation proceeded according to a fixed pattern that could be subdivided in three consecutive phases, designated as the lag phase, biofilm production phase, and steady-state phase. Methanogenic activity and biomass content of the fluidized bed granules were found to be accurate parameters of the course of biofilm formation. More indirect parameters monitored did not give unambiguous results in all instances. The composition of the newly developed biomass as assessed on the basis of potential methanogenic activities on different substrates and of the concentration of specific methanogenic cofactors was consistent with electron microscopic observations.  相似文献   

15.
Characterization studies of calcium alginate beads with encapsulated Pseudomonas putida MTCC 1194, used for the biodegradation of phenol, were carried out to investigate the reactivity, reusability and structural strength of the solid matrix. Various techniques were employed to improve the structural stability of the immobilized solid necessary for its use in commercial reactors like packed bed flow reactor, fluidized bed and CSTR systems. Experiments were performed to establish the optimum conditions for durability, strength and steady biochemical reactivity. During a batch run of 40 h a gradual decline in the rate of phenol degradation was observed with the immobilized system. The calcium alginate beads with high structural strength yielded decreased activity. Treatment with a hardening agent like glutaraldehyde for different concentrations and treatment times led to variations in structural stability, reusability and the extent of phenol degradation. Scanning electron microscope studies of the immobilized solid indicated the internal distribution pattern of the cells encapsulated in a calcium alginate bead. Received: 13 November 1998 / Received revision: 27 January 1999 / Accepted: 31 January 1999  相似文献   

16.
The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency.  相似文献   

17.
The startup of anaerobic fluidized bed reactors, which use Manville R-633 beads as the growth support media, acetate enriched bacterial culture as the inoculum, and acetic acid as the sole substrate, is studied. Tow startup strategies are evaluated: one based on maximum and stable substrate utilization and another based on maximum substrate loading controlled by reactor pH. The startup process is characterized using a number of operational parameters.The reactors again excellent total organic carbon (TOC) removal (i.e., > 97% at a feed concentration of 5000 mg TOC/L) and stable methane production (i.e., 0.90 L CH(4)/g TOC, where TOC(r) is TOC removed) at a early stage of the startup process, regardless of the strategies applied. The loading can be increased rapidly without the danger of being overloaded. Significant losses of growth support media and biomass caused by gas effervescence at higher loadings limits the maximum loading that can be safely applied during startup process.A high reactor immobilized biomass inventory is achievable using the porous growth support media (e.g., Manville 633 beads). A rapid increase in loading creates a substrate rich environment that yields more viable reactor biomass. Both substrate utilization rate (batch and continuous) and immobilized biomass inventory stabilize concomitantly at the late stage of the startup process, indicating the attainment of steady-state conditions in reactors. Therefore, they are better parameters that TOC removal and methane production for characterizing the entire startup process of aerobic fluidized bed reactor.The strategy based on maximum substrate loading controlled by reactor pH significantly shortens the startup time. In this case, the reactor attains steady-state conditions approximately 140 days after startup. On the other hand, a startup time of 200 days is required when the strategy based maximum substrate utilization is adopted. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.  相似文献   

19.
The start-up and performance of the anaerobic attached film expanded bed (AAFEB) reactor with pre-aeration of carrier were investigated. The carriers of the reactors had been aerated for 10 days before they were put into the AAFEB reactors. The results indicated that the reactors advance the start-up by 15 days, and maintain higher efficiency when they were subjected to organic and hydraulic loading shock, but during steady-state operation, the reactors did not show better performance than the control reactors without pre-aeration of carrier. The thicker biofilm and higher biomass concentration of the reactors with pre-aeration were observed during the start-up period, but the difference between two types of reactors tapered with the time course, and at the steady-state operation, the difference between two types of reactors on these two parameters was not obvious. Maximum specific methane or acids production rates, dehydrogenase activity and coenzyme F(420) content were continuously higher than those of the control reactors. After running 30 days, filamentous bacteria dominated in the reactors with pre-aeration, whereas the cocci were predominant species in the control reactors. It was suggested that the action of the biofilm is strongly dependent on the biofilm thickness or the biomass concentration in normal circumstances, but under adverse circumstances, such as organic or hydraulic loading shock, the characteristics and activity of the anaerobic granular sludge play key roles on the reactor performance. These results clearly indicated that pre-aeration of carrier favor to enhance the start-up and performance of AAFEB reactor.  相似文献   

20.
The effect of inoculum source on anaerobic thermophilic digestion of separately collected organic fraction of municipal solid wastes (SC_OFMSW) has been studied. Performance of laboratory scale reactors (V: 1.1 L) were evaluated using six different inoculums sources: (1) corn silage (CS); (2) restaurant waste digested mixed with rice hulls (RH_OFMSW); (3) cattle excrement (CATTLE); (4) swine excrement (SWINE); (5) digested sludge (SLUDGE); and (6) SWINE mixed with SLUDGE (1:1) (SWINE/SLUDGE). The SC_OFMSW was separately and collected from university restaurant. The selected conditions were: 25% of inoculum, 30% of total solid and 55 degrees C of temperature, optimum in the thermophilic range. The six inoculum sources showed an initial start-up phase in the range between 2 and 4 days and the initial methane generation began over 10 days operational process. Results indicated that SLUDGE is the best inoculum source for anaerobic thermophilic digestion of the treatment of organic fraction of municipal solid waste at dry conditions (30%TS). Over 60 days operating period, it was confirmed that SLUDGE reactor can achieve 44.0%COD removal efficiency and 43.0%VS removal. In stabilization phase, SLUDGE reactor showed higher volumetric biogas generated of 78.9 mL/day (or 35.6 mLCH(4)/day) reaching a methane yield of 0.53 LCH(4)/gVS. Also, SWINE/SLUDGE and SWINE were good inoculums at these experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号