首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A number of published data suggest a variable stoichiometry between the rates of cellular potassium uptake and net sodium transport (J Na) across the urinary bladder of the toad. This problem was examined by simultaneously studying the intracellular chemical activity of potassium (a K) with open-tip K+-selective microelectrodes and micropipets, and monitoringJ Na by measuring the short-circuit current (SCC). When bathed in the short-circuited state with solutions containing ana K of 2.7mm, the mean ±sem values for intracellulara K were 43±0.6mm.Ouabain, at a concentration of 10–2 m, reduced intracellulara K by 56–67% and SCC by 96–100%. At 5×10–4 m, ouabain reversibly reduced intracellulara K by 40–55%, and SCC by 63–68%; the inhibition of SCC was only partly reversible during the period of observation.Removal of external potassium reduced intracellulara K by 69–80% and SCC by 51–76%. Restoration of external potassium entirely returned intracellulara K to its control value, but only partially reversed the inhibition of SCC during the period of study. Furthermore, recovery ofa K began 19–43 min before that of SCC; recovery ofa K was 90–97% complete before any increase in SCC could be measured. Although other interpretations are possible, the simplest interpretation of the data is that the processes responsible for potassium accumulation and transepithelial sodium transport are not identical. We propose the existence of a separate transfer mechanism at the basolateral cell membrane, responsible for accumulating intracellular potassium, and not directly coupled to active sodium transport.  相似文献   

2.
Summary The kinetics of potassium conductance were analyzed in response to voltage-clamp steps with holding potential (–75 mV) as initial condition and after a positive prepulse to-wards +45 mV of 10-msec duration. As the potassium reversal potentialE K altered during potassium current flow, a method to obtain the conductance independent ofE K was used. Conductance kinetics at 15°C were analyzed according to the Hodgkin-Huxley (HH) model. The time constant of potassium activation, with holding potential as initial condition, is a monotonous decreasing function of membrane potential. Its value ofca. 9 msec at –50 mV decreases to 1 msec at +30 mV. Changes inE K did not affect the voltage dependency of this time constant. The time constant of potassium deactivation, i.e. the off-response following a 10-msec prepulse towards +45 mV, shows a completely different voltage dependency. At a membrane potential of –90 mV it is approximately 2 msec and gradually increases for more positive voltages towards a maximum value of about 6 msec, that is reached between –5 and 0 mV. At still larger values of membrane voltage this time constant starts to fall again. It is concluded that a HH-model, as applied for a single population of potassium channels, has to be rejected. Computer simulations indicate that an extension to two populations of independent potassium channels, each with HH-kinetics, is also inconsistent with the observed results.  相似文献   

3.
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.  相似文献   

4.
Rates of hydrogen ion secretion and potassium (86Rb) absorption by intact roots of twenty-four barley varieties were measured in solutions containing K2SO4 (1 × 10−4 to 1 × 10−3 molar) plus 5 × 10−4 molar CaSO4, at initial pH values in the range 5.3 to 5.5. Fluxes of H+ and K+ were strongly correlated in short-term experiments (up to 15 minutes) as well as in long-term experiments (lasting 24 hours). The observed correlations provide the basis for a preliminary screening method, designed to segregate varieties with high rates of potassium uptake by the use of an acid-base indicator (methyl red).  相似文献   

5.
The relative permeability of sodium channels to eight metal cations is studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions are measured in Na-free solutions containing the test ion. Measured reversal potentials and the Goldman equation are used to calculate the permeability sequence: Na+ ≈ Li+ > Tl+ > K+. The ratio PK/PNa is 1/12. The permeabilities to Rb+, Cs+, Ca++, and Mg++ are too small to measure. The permeability ratios agree with observations on the squid giant axon and show that the reversal potential ENa differs significantly from the Nernst potential for Na+ in normal axons. Opening and closing rates for sodium channels are relatively insensitive to the ionic composition of the bathing medium, implying that gating is a structural property of the channel rather than a result of the movement or accumulation of particular ions around the channel. A previously proposed pore model of the channel accommodates the permeant metal cations in a partly hydrated form. The observed sequence of permeabilities follows the order expected for binding to a high field strength anion in Eisenman's theory of ion exchange equilibria.  相似文献   

6.
At resting cytosolic Ca2+, passive K+ conductance of a higher plant tonoplast is likely dominated by fast vacuolar (FV) channels. This patch-clamp study describes K+-sensing behavior of FV channels in Beta vulgaris taproot vacuoles. Variation of K+ between 10 and 400 mM had little effect on the FV channel conductance, but a pronounced one on the open probability. Shift of the voltage dependence by cytosolic K+ could be explained by screening of the negative surface charge with a density σ = 0.25 e/nm2. Vacuolar K+ had a specific effect on the FV channel gating at negative potentials without significant effect on closed-open transitions at positive ones. Due to K+ effects at either membrane side, the potential at which the FV channel has minimal activity was always situated at ~50 mV below the potassium equilibrium potential, EK+. At tonoplast potentials below or equal to EK+, the FV channel open probability was almost independent on the cytosolic K+ but varied in a proportion to the vacuolar K+. Therefore, the release of K+ from the vacuole via FV channels could be controlled by the vacuolar K+ in a feedback manner; the more K+ is lost the lower will be the transport rate.  相似文献   

7.
OptZyme is a new computational procedure for designing improved enzymatic activity (i.e., kcat or kcat/KM) with a novel substrate. The key concept is to use transition state analogue compounds, which are known for many reactions, as proxies for the typically unknown transition state structures. Mutations that minimize the interaction energy of the enzyme with its transition state analogue, rather than with its substrate, are identified that lower the transition state formation energy barrier. Using Escherichia coli β-glucuronidase as a benchmark system, we confirm that KM correlates (R2 = 0.960) with the computed interaction energy between the enzyme and the para-nitrophenyl- β, D-glucuronide substrate, kcat/KM correlates (R2 = 0.864) with the interaction energy of the transition state analogue, 1,5-glucarolactone, and kcat correlates (R2 = 0.854) with a weighted combination of interaction energies with the substrate and transition state analogue. OptZyme is subsequently used to identify mutants with improved KM, kcat, and kcat/KM for a new substrate, para-nitrophenyl- β, D-galactoside. Differences between the three libraries reveal structural differences that underpin improving KM, kcat, or kcat/KM. Mutants predicted to enhance the activity for para-nitrophenyl- β, D-galactoside directly or indirectly create hydrogen bonds with the altered sugar ring conformation or its substituents, namely H162S, L361G, W549R, and N550S.  相似文献   

8.
The potassium conductance of the basolateral membrane (BLM) of proximal tubule cells is a critical regulator of transport since it is the major determinant of the negative cell membrane potential and is necessary for pump-leak coupling to the Na+,K+-ATPase pump. Despite this pivotal physiological role, the properties of this conductance have been incompletely characterized, in part due to difficulty gaining access to the BLM. We have investigated the properties of this BLM K+ conductance in dissociated, polarized Ambystoma proximal tubule cells. Nearly all seals made on Ambystoma cells contained inward rectifier K+ channels (γslope, in = 24.5 ± 0.6 pS, γchord, out = 3.7 ± 0.4 pS). The rectification is mediated in part by internal Mg2+. The open probability of the channel increases modestly with hyperpolarization. The inward conducting properties are described by a saturating binding–unbinding model. The channel conducts Tl+ and K+, but there is no significant conductance for Na+, Rb+, Cs+, Li+, NH4+, or Cl. The channel is inhibited by barium and the sulfonylurea agent glibenclamide, but not by tetraethylammonium. Channel rundown typically occurs in the absence of ATP, but cytosolic addition of 0.2 mM ATP (or any hydrolyzable nucleoside triphosphate) sustains channel activity indefinitely. Phosphorylation processes alone fail to sustain channel activity. Higher doses of ATP (or other nucleoside triphosphates) reversibly inhibit the channel. The K+ channel opener diazoxide opens the channel in the presence of 0.2 mM ATP, but does not alleviate the inhibition of millimolar doses of ATP. We conclude that this K+ channel is the major ATP-sensitive basolateral K+ conductance in the proximal tubule.  相似文献   

9.
The effects of several alcohols on the resting potential, action potential, and voltage-clamp currents of the squid giant axon have been measured. All the alcohols employed are similar in that they depress maximum sodium conductance much more than maximum potassium conductance. Octyl alcohol differs from the others (C2 through C5) in that it has less tendency to depolarize the axon. Depolarization is always accompanied by a decrease of gK near the resting potential, such that the ratio gK/gleak is decreased. Steady-state inactivation of the sodium ion current is unaffected by alcohols, as is membrane capacity. Resting membrane conductance is usually decreased by alcohols. The findings are discussed in relation to work on monomolecular films.  相似文献   

10.
The parasubiculum (PaS) is a component of the hippocampal formation that sends its major output to layer II of the entorhinal cortex. The PaS receives strong cholinergic innervation from the basal forebrain that is likely to modulate neuronal excitability and contribute to theta-frequency network activity. The present study used whole cell current- and voltage-clamp recordings to determine the effects of cholinergic receptor activation on layer II PaS neurons. Bath application of carbachol (CCh; 10–50 µM) resulted in a dose-dependent depolarization of morphologically-identified layer II stellate and pyramidal cells that was not prevented by blockade of excitatory and inhibitory synaptic inputs. Bath application of the M1 receptor antagonist pirenzepine (1 µM), but not the M2-preferring antagonist methoctramine (1 µM), blocked the depolarization, suggesting that it is dependent on M1 receptors. Voltage-clamp experiments using ramped voltage commands showed that CCh resulted in the gradual development of an inward current that was partially blocked by concurrent application of the selective Kv7.2/3 channel antagonist XE-991, which inhibits the muscarine-dependent K+ current I M. The remaining inward current also reversed near EK and was inhibited by the K+ channel blocker Ba2+, suggesting that M1 receptor activation attenuates both I M as well as an additional K+ current. The additional K+ current showed rectification at depolarized voltages, similar to K+ conductances mediated by Kir 2.3 channels. The cholinergic depolarization of layer II PaS neurons therefore appears to occur through M1-mediated effects on I M as well as an additional K+ conductance.  相似文献   

11.
Leaflet movements in Samanea saman are driven by the shrinking and swelling of cells in opposing (extensor and flexor) regions of the motor organ (pulvinus). Changes in cell volume, in turn, depend upon large changes in motor cell content of K+, Cl and other ions. We performed patch-clamp experiments on extensor and flexor protoplasts, to determine whether their plasma membranes contain channels capable of carrying the large K+ currents that flow during leaflet movement. Recordings in the “whole-cell” mode reveal depolarization-activated K+ currents in extensor and flexor cells that increase slowly (t½ = ca. 2 seconds) and remain active for minutes. Recordings from excised patches reveal a single channel conductance of ca. 20 picosiemens in both cell types. The magnitude of the K+ currents is adequate to account quantitatively for K+ loss, previously measured in vivo during cell shrinkage. The K+ channel blockers tetraethylammonium (5 millimolar) or quinine (1 millimolar) blocked channel opening and decreased light- and dark-promoted movements of excised leaflets. These results provide evidence for the role of potassium channels in leaflet movement.  相似文献   

12.
K2PØ, the two-pore domain potassium background channel that determines cardiac rhythm in Drosophila melanogaster, and its homologues that establish excitable membrane activity in mammals are of unknown structure. K2P subunits have two pore domains flanked by transmembrane (TM) spans: TM1-P1-TM2-TM3-P2-TM4. To establish spatial relationships in K2PØ, we identified pairs of sites that display electrostatic compensation. Channels silenced by the addition of a charge in pore loop 1 (P1) or P2 were restored to function by countercharges at specific second sites. A three-dimensional homology model was determined using the crystal structure of KV1.2, effects of K2PØ mutations to establish alignment, and compensatory charge–charge pairs. The model was refined and validated by continuum electrostatic free energy calculations and covalent linkage of introduced cysteines. K2P channels use two subunits arranged so that the P1 and P2 loops contribute to one pore, identical P loops face each other diagonally across the pore, and the channel complex has bilateral symmetry with a fourfold symmetric selectivity filter.  相似文献   

13.
Parental strains and asporogenous mutants of Bacillus thuringiensis subspp. kurstaki and aizawai produced high yields of δ-endotoxin on M medium, which contained 330 μg of potassium per ml, but not on ST and ST-a media, each of which contained only 11 μg of potassium per ml. On ST and ST-a media, refractile granules were formed instead. These granules had no insecticidal activity against silkworms and were isolated and identified as poly-β-hydroxybutyric acid. Supplementation of the potassium-deficient ST-a medium with 0.1% KH2PO4 (3.7 mM) led to the formation of crystalline δ-endotoxin. The replacement of KH2PO4 with equimolar amounts of KCl, KNO3, and potassium acetate or an equivalent amount of K2SO4 had a similar effect, whereas the addition of an equimolar amount of NaH2PO4 or NH4H2PO4 did not cause the endotoxin to form. An asporogenous mutant, B. thuringiensis subsp. kurstaki strain 290-1, produced δ-endotoxin on ST-a medium supplemented with 3 mM or more potassium but formed only poly-β-hydroxybutyric acid granules on the media containing ≤1 mM potassium. These results clearly indicate that a certain concentration of potassium is essential for the fermentative production of δ-endotoxin by these isolates of B. thuringiensis. Manganese could not be substituted for potassium. Phosphate ions stimulated poly-β-hydroxybutyric acid formation by strain 290-1. The sporulation of B. thuringiensis and several other Bacillus strains was suppressed on the potassium-deficient ST medium. This suggests that potassium plays an essential role not only in Bacillus cell growth and δ-endotoxin formation but also in sporulation.  相似文献   

14.
The interaction of extracellular Na (Nao), K (Ko), and strophanthidin with the Na-K pump of the human red blood cell has been investigated. Inhibition by submaximal concentrations of strophanthidin rapidly reaches a level which does not increase further over a relatively long period of time. Under these circumstances, it is possible to apply a steady-state kinetic analysis to the interaction of Nao, Ko, and strophanthidin with the pump. In Na-free solutions, strophanthidin increases the apparent K1/2 of the pump for Ko, but does not change the form of the relation between the reciprocal of the active K influx (iMKP–1) and the reciprocal of [Ko] ([Ko]–1); the relation both in the presence and absence of strophanthidin is adequately described by a straight line. In solutions containing Na, strophanthidin changes the form of the curve describing the relation between iMKP–1 vs. [Ko]–1; the curve becomes more parabolic in solutions containing strophanthidin. The rate of ouabain binding to K-free cells has also been measured; in the absence of K, the rate of binding is unaffected by Nao. The data are considered in terms of a simple kinetic model. The findings can be explained if it is supposed that at low external K the form of the pump combined with one Nao is more likely to combine with strophanthidin than is the uncombined form of the pump. The uncombined form of the pump is more likely to combine with K even at very low Ko than with strophanthidin.  相似文献   

15.
The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 μl liter−1) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. As an exception, P. carboxydoflava consumed CO also after heterotrophic growth on pyruvate. At low cell densities the CO consumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. The Km values for CO of the carboxydobacteria (Km = 465 to 1,110 μl of CO liter−1) were much higher than those of the natural soils (Km = 5 to 8 μl of CO liter−1). Considering the difference of the Km values and the observed Vmax values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.  相似文献   

16.

Objective

To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters.

Methods

17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and K trans, k ep and v e were measured for each tumour and correlated using Spearman’s ρ.

Results

Significant correlations were observed between SUVmean and K trans (ρ = 0.43; p ≤ 0.05); SUVmean and k ep (ρ = 0.44; p ≤ 0.05); K trans and k ep (ρ = 0.53; p ≤ 0.05); and between k ep and v e (ρ = -0.74; p ≤ 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (ρ = -0.35; p = 0.08); SUVmax and K trans (ρ = 0.37; p = 0.07); SUVmax and k ep (ρ = 0.39; p = 0.06); and ADCmean and v e (ρ = 0.4; p = 0.06).

Conclusion

Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density.  相似文献   

17.
An investigation was conducted into the feasibility of using enzymically isolated protoplasts from suspension-cultured cells of Nicotiana glutinosa L. to study ion transport. Transport of K+ (86Rb), 36Cl, H232PO4 and 45Ca2+ from 1 millimolar salt solutions was determined after separation of intact protoplasts from nonabsorbed tracers by centrifugation through a Ficoll step gradient. Influx of K+, Cl, and H2PO4 measured over a 30-minute period was reduced (up to 99%) by respiratory inhibitors such as 5 micrograms per milliliter oligomycin, 0.1 millimolar dinitrophenol, 0.1 millimolar cyanide, or N2 gas. In contrast, Ca2+ influx was not tightly coupled to respiratory energy production. The influx of K+ was highest between pH 6.5 and 7.5 whereas the influx of H2PO4 and Cl was greatest between pH 4.5 and 5.5. Influx of K+ and Cl was maximal at 35 and 45 C, respectively, and was almost completely inhibited below 10 C. Fusicoccin (0.01 millimolar) stimulated K+ influx by more than 200% but had no effect on the influx of either Cl or H2PO4. Apparent H+ efflux, as measured by decrease in solution pH, was enhanced by K+, stimulated further by 0.01 millimolar fusicoccin, and inhibited by 0.1 millimolar dinitrophenol or 5 micrograms per milliliter oligomycin. The measured ionic fluxes into protoplasts were similar to those obtained with intact cultured cells. The results indicate that enzymic removal of the cell wall produced no significant alteration in the transport properties of the protoplast, and that it is feasible to use isolated protoplasts for studies on ion transport.  相似文献   

18.
Miller DM 《Plant physiology》1985,77(1):162-167
The cut ends of excised Zea mays roots were sealed to a pressure transducer and their root pressures recorded. These rose approximately hyperbolically to a maximum value of 4.21 ± 0.34 bar after 30 to 40 minutes. Xylem exudate could not be collected at this pressure since the flow rate was zero. Samples of exudate were collected at lower applied pressures (ΔP), however, and Δπ, the osmotic pressure difference between them and the solution bathing the root, was measured by freezing point depression. A plot of ΔP/Δπ against Jv/Δπ, where Jv is the volume flux, proved to be a straight line whose intercept, equal to σ, the reflection coefficient, was 0.853 ± 0.016. The maximum xylem concentrations of various chemical species were found by a similar extrapolative method and compared with those in the cell sap. This indicated that (a) Ca2+, Mg2+, NO32−, SO42−, and most amino acids move from the cells to the xylem down an electrochemical potential gradient; (b) relative to these ions H+, NH4+, glutamine and asparagine are actively transported into the xylem; and (c) H2PO4, and K+ are actively retained in the symplasm.  相似文献   

19.
Measurements of ΔI as a function of retinal area illuminated have been obtained at various levels of standard intensity I 1, using "white" light and light of three modal wave-lengths (λ465, 525, 680), for monocular stimulation and for simultaneous excitation of the two eyes ("binocular"), using several methods of varying (rectangular) area and retinal location, with control of exposure time. For data homogeneous with respect to method of presentation, log ΔIm = -Z log A + C, where ΔI = Ĩ 2I 1, A is area illuminated, and C is a terminal constant (= log ΔIm for A = 1 unit) depending on the units in which ΔI and A are expressed, and upon I 1. The equation is readily deduced on dimensional grounds, without reference to specific theories of the nature of ΔI or of retinal area in terms of its excitable units. Z is independent of the units of I and A. Experimentally it is found to be the same for monocular and binocular excitations, as is to be expected. Also as is expected it is not independent of λ, and it is markedly influenced by the scheme according to which A is varied; it depends directly upon the rate at which potentially excitable elements are added when A is made to increase. For simultaneous excitation of the two eyes (when of very nearly equivalent excitability), ΔĪB is less than for stimulation of either eye alone, at all levels of I 1, A, λ. The mean ratio (ΔĪL + ΔĪR)/2 to ΔIB was 1.38. For white light, doubling A on one retina reduces ΔIm in the ratio 1.21, or a little less than for binocular presentation under the same conditions. These facts are consistent with the view that the properties of ΔI are quantitatively determined by events central to the retina. The measure σI of organic variation in discrimination of intensities and ΔIm are found to be in simple proportion, independent of I 1, A, λ (and exposure time). Variability (σI) is not a function of the mode of presentation, save that it may be slightly higher when both retinas are excited, and its magnitude (for a given level of ΔIm) is independent of the law according to which the adjustable intensity I 2 is instrumentally controlled.  相似文献   

20.
Kinetics of Denitrifying Growth by Fast-Growing Cowpea Rhizobia   总被引:3,自引:2,他引:1       下载免费PDF全文
Two fast-growing strains of cowpea rhizobia (A26 and A28) were found to grow anaerobically at the expense of NO3, NO2, and N2O as terminal electron acceptors. The two major differences between aerobic and denitrifying growth were lower yield coefficients (Y) and higher saturation constants (Ks) with nitrogenous oxides as electron acceptors. When grown aerobically, A26 and A28 adhered to Monod kinetics, respectively, as follows: Ks, 3.4 and 3.8 μM; Y, 16.0 and 14.0 g · cells eq−1; μmax, 0.41 and 0.33 h−1. Yield coefficients for denitrifying growth ranged from 40 to 70% of those for aerobic growth. Only A26 adhered to Monod kinetics with respect to growth on all three nitrogenous oxides. The apparent Ks values were 41, 270, and 460 μM for nitrous oxide, nitrate, and nitrite, respectively; the Ks for A28 grown on nitrate was 250 μM. The results are kinetically and thermodynamically consistent in explaining why O2 is the preferred electron acceptor. Although no definitive conclusions could be drawn regarding preferential utilization of nitrogenous oxides, nitrite was inhibitory to both strains and effected slower growth. However, growth rates were identical (μmax, 0.41 h−1) when A26 was grown with either O2 or NO3 as an electron acceptor and were only slightly reduced when A28 was grown with NO3 (0.25 h−1) as opposed to O2 (0.33 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号