首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.  相似文献   

2.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

3.
EMSY is a recently discovered gene encoding a BRCA2-associated protein and is amplified in some sporadic breast and ovarian cancers. The EMSY sequence contains no known domain except for a conserved approximately 100 residue segment at the N terminus. This so-called ENT domain is unique in the human genome, although multiple copies are found in Arabidopsis proteins containing members of the Royal family of chromatin remodelling domains. Here, we report the crystal structure of the ENT domain of EMSY, consisting of a unique arrangement of five alpha-helices that fold into a helical bundle arrangement. The fold shares regions of structural homology with the DNA-binding domain of homeodomain proteins. The ENT domain forms a homodimer via the anti-parallel packing of the extended N-terminal alpha-helix of each molecule. It is stabilized mainly by hydrophobic residues at the dimer interface and has a dissociation constant in the low micromolar range. The dimerisation of EMSY mediated by the ENT domain could provide flexibility for it to bind two or more different substrates simultaneously.  相似文献   

4.
Changes in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) alpha (HP1alpha) and HP1beta on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins. In vivo targeting of an enhanced green fluorescent protein-tagged HP1-lac repressor fusion to a lac operator-containing, gene-amplified chromosome region causes local condensation of the higher-order chromatin structure, recruitment of the histone methyltransferase SETDB1, and enhanced trimethylation of histone H3 lysine 9. Polycomb group proteins of both the HPC/HPH and the EED/EZH2 complexes, which are involved in the heritable repression of gene activity, are not recruited to the amplified chromosome region by HP1alpha and HP1beta in vivo targeting. HP1alpha targeting causes the recruitment of endogenous HP1beta to the chromatin region and vice versa, indicating a direct interaction between the two HP1 homologous proteins. Our findings indicate that HP1alpha and HP1beta targeting is sufficient to induce heterochromatin formation.  相似文献   

5.
In mammalian cells, as in Schizosaccharomyces pombe and Drosophila, HP1 proteins bind histone H3 tails methylated on lysine 9 (K9). However, whereas K9-methylated H3 histones are distributed throughout the nucleus, HP1 proteins are enriched in pericentromeric heterochromatin. This observation suggests that the methyl-binding property of HP1 may not be sufficient for its heterochromatin targeting. We show that the association of HP1α with pericentromeric heterochromatin depends not only on its methyl-binding chromo domain but also on an RNA-binding activity present in the hinge region of the protein that connects the conserved chromo and chromoshadow domains. Our data suggest the existence of complex heterochromatin binding sites composed of methylated histone H3 tails and RNA, with each being recognized by a separate domain of HP1α.  相似文献   

6.
7.
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.  相似文献   

8.
The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1alpha, HP1beta, and HP1gamma in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1alpha, HP1beta, and HP1gamma from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1alpha, HP1beta, and HP1gamma at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.  相似文献   

9.
Mammalian heterochromatin protein 1 (HP1) alpha, HP1beta and HP1gamma are closely related non-histone chromosomal proteins that function in gene silencing, presumably by organizing higher order chromatin structures. Here, we show by co-immunoprecipitation that HP1alpha, but neither HP1beta nor HP1gamma, forms a complex with the BRG1 chromatin-remodeling factor in HeLa cells. In vitro, BRG1 interacts directly and preferentially with HP1alpha. The region conferring this preferential binding has been mapped to residues 106-180 of the HP1alpha C-terminal chromoshadow domain. Using site-directed mutagenesis, we have identified three amino acid residues I113, A114 and C133 in HP1alpha (K, P and S in HP1beta and HP1gamma) that are essential for the selective interaction of HP1alpha with BRG1. Interestingly, these residues were also shown to be critical for the silencing activity of HP1alpha. Taken together, these results demonstrate that mammalian HP1 proteins are biochemically distinct and suggest an entirely novel function for BRG1 in modulating HP1alpha-containing heterochromatic structures.  相似文献   

10.
Heterochromatin-associated protein 1 (HP1) is thought to affect chromatin structure through interactions with other proteins in heterochromatin. Chromo domains located near the amino (amino chromo) and carboxy (chromo shadow) termini of HP1 may mediate such interactions, as suggested by domain swapping, in vitro binding and 3D structural studies . Several HP1-associated proteins have been reported, providing candidates that might specifically complex with the chromo domains of HP1. However, such association studies provide little mechanistic insight and explore only a limited set of potential interactions in a largely non-competitive setting. To determine how chromo domains can selectively interact with other proteins, we probed random peptide phage display libraries using chromo domains from HP1. Our results demonstrate that a consensus pentapeptide is suffident for specific interaction with the HP1 chromo shadow domain. The pentapeptide is found in the amino acid sequence of reported HP1-associated proteins, including the shadow domain itself. Peptides that bind the shadow domain also disrupt shadow domain dimers. Our results suggest that HP1 dimerization, which is thought to mediate heterochromatin compaction and cohesion, occurs via pentapeptide binding. In general, chromo domains may function by avidly binding short peptides at the surface of chromatin-associated proteins.  相似文献   

11.
12.
Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.  相似文献   

13.
The heterochromatin protein 1 (HP1) family of proteins is involved in gene silencing via the formation of heterochromatic structures. They are composed of two related domains: an N-terminal chromo domain and a C-terminal shadow chromo domain. Present results suggest that chromo domains may function as protein interaction motifs, bringing together different proteins in multi-protein complexes and locating them in heterochromatin. We have previously determined the structure of the chromo domain from the mouse HP1beta protein, MOD1. We show here that, in contrast to the chromo domain, the shadow chromo domain is a homodimer. The intact HP1beta protein is also dimeric, where the interaction is mediated by the shadow chromo domain, with the chromo domains moving independently of each other at the end of flexible linkers. Mapping studies, with fragments of the CAF1 and TIF1beta proteins, show that an intact, dimeric, shadow chromo domain structure is required for complex formation.  相似文献   

14.
15.
16.
17.
Drosophila heterochromatin-associated protein 1 (HP1) is an abundant component of heterochromatin, a highly condensed compartment of the nucleus that comprises a major fraction of complex genomes. Some organisms have been shown to harbor multiple HP1-like proteins, each exhibiting spatially distinct localization patterns within interphase nuclei. We have characterized the subnuclear localization patterns of two newly discovered Drosophila HP1-like proteins (HP1b and HP1c), comparing them with that of the originally described fly HP1 protein (here designated HP1a). While HP1a targets heterochromatin, HP1b localizes to both heterochromatin and euchromatin and HP1c is restricted exclusively to euchromatin. All HP1-like proteins contain an amino-terminal chromo domain, a connecting hinge, and a carboxyl-terminal chromo shadow domain. We expressed truncated and chimeric HP1 proteins in vivo to determine which of these segments might be responsible for heterochromatin-specific and euchromatin-specific localization. Both the HP1a hinge and chromo shadow domain independently target heterochromatin, while the HP1c chromo shadow domain is implicated solely in euchromatin localization. Comparative sequence analyses of HP1 homologs reveal a conserved sequence block within the hinge that contains an invariant sequence (KRK) and a nuclear localization motif. This block is not conserved in the HP1c hinge, possibly accounting for its failure to function as an independent targeting segment. We conclude that sequence variations within the hinge and shadow account for HP1 targeting distinctions. We propose that these targeting features allow different HP1 complexes to be distinctly sequestered in organisms that harbor multiple HP1-like proteins.  相似文献   

18.
In order to examine the independent self-assembly of the beta fragment of metallothionein and the interaction between two domains with the linker sequence, Lys-Lys-Ser, the chemically synthesized genes of the beta domain and its dimer (beta-KKS-beta) were cloned into vector pGEX-4T-1 and expressed as carboxyl terminal extension of glutathione-S-transferase (GST). After the GST fusion proteins had been digested with thrombin on a glutathione-Sepharose 4B affinity chromatography column, the beta domain and its dimer were purified with gel filtration and analyzed for their biochemical and spectroscopic properties. Amino acid composition and molecular mass are determined to be consistent with the expected value. The analysis of metal content shows that the beta domain and its dimer can bind with about 3eq and 6eq divalent metals, respectively. The characteristic peak presented around 254 nm in the UV and CD spectrum indicated that both the beta domain and its dimer are able to form the cadmium-thiolate clusters without the aid of the alpha domain. Furthermore, the absorption peak of the beta domain dimer is much higher than that of the beta domain, which suggested that there is an interaction between two beta domains. Finally, the metal-binding ability was determined by DTNB competitive reaction and the value of half dissociation pH, the results reveal that the beta domain dimer has stronger metal-binding ability than the single beta domain, which provides further evidence of the interaction between the two domains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号