首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growth, photosynthesis, dark respiration and pigment contents were monitored in adult sporophytes of the Antarctic brown alga Desmarestia menziesii J. Agardh grown under fluctuating Antarctic daylength conditions. Growth rates were closely coupled to daylength variations with values varying from 0.05% d?1 in winter condition (July-August) to 0.5% d?1 in early summer (December). Photosynthetic pigments had maximum values of 1.8 mg g?1 FW (chlorophyll a), 0.4 mg g?1 FW (chlorophyll c) and 0.9 mg g?1 FW (fucoxanthin) in summer. These changes were also closely related to individual size and biomass of the plants. Net photosynthesis (Pmax), on a fresh weight basis, showed a clear seasonal pattern with highest rates of 25μmol O2 g?1 FW h?1 in October and minima close to 9μmol O2 g?1 FW h?1 in April. Dark respiration was high in spring (13μmol O2 g?1 FW h?1) approximately coinciding with growth peaks. Likewise, photosynthetic efficiency (α) and the initial saturating light point of photosynthesis (lk) increased significantly in spring [1.3 μimol O2 g?1 FW h?1 (μmol m?2 s?1)?1 and 26μmol photons m?2 s?1, respectively]. In the case of α, no significant differences between fresh weight and Chl a based rates were found. The results of the present study are the first that demonstrate seasonality of physiological parameters in D. menziesii sporophytes and confirm also that phenology and physiology of macroalgae can be simulated in the laboratory. On the other hand this study adds new elements to the explanation of the life strategy of D. menziesii, in particular that algal growth and photosynthesis occur under a programmed seasonal pattern.  相似文献   

2.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

3.
The photosynthetic performance of macroalgae isolated in Antarctica was studied in the laboratory. Species investigated were the brown algae Himantothallus grandifolius, Desmarestia anceps, Ascoseira mirabilis, the red algae Palmaria decipiens, Iridaea cordata, Gigartina skottsbergii, and the green algae Enteromorpha bulbosa, Acrosiphonia arcta, Ulothrix subflaccida and U. implexa. Unialgal cultures of the brown and red algae were maintained at 0°C, the green algae were cultivated at 10°C. IK values were between 18 and 53 μmol m?2 s?1 characteristic or low light adapted algae. Only the two Ulothrix species showed higher IK values between 70 and 74 μmol m?2 s?1. Photosynthesis compensated dark respiration at very low photon fluence rates between 1.6 and 10.6 μmol m?2 s?1. Values of α were high: between 0.4 and 1.1 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the brown and red algae and between 2.1 and 4.9 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the green algal species. At 0°C Pmax values of the brown and red algae ranged from 6.8 to 19.1 μmol O2 g?1 FW h?1 and were similarly high or higher than those of comparable Arctic-cold temperate species. Optimum temperatures for photosynthesis were 5 to 10°C in A. mirabilis, 10°C in H. grandifolius, 15°C in G. skottsbergii and 20°C or higher in D. anceps and I. cordata. P: R ratios strongly decreased in most brown and red algae with increasing temperatures due to different Q10 values for photosynthesis (1.4 to 2.5) and dark respiration (2.5 to 4.1). These features indicate considerable physiological adaptation to the prevailing low light conditions and temperatures of Antarctic waters. In this respect the lower depth distribution limits and the northern distribution boundaries of these species partly depend on the physiological properties described here.  相似文献   

4.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

5.
Abstract Using an open-system leaf chamber, gas exchange measurements on attached leaves of 3-4-year-old Golden Delicious apple trees, made through two seasons, provided data from which the parameters of a leaf photosynthesis model could be derived. The equation is: where C1 is internal CO2 concentration and Qp is the incident quantum flux. There was considerable leaf to leaf variation in the values of the parameters but no clear seasonal trends were established. The initial slope (a) had an average value of about 2.5 × 10?3 mg μmol?1? (i.e. quantum yield ~ 0.057); the mesophyll conductance (gm) was about 3.5 mm s?1 in extension leaves of trees carrying fruit and 2.5 mm s?1 in extension leaves of defruited trees. Differences between the values of gm for spur leaves with and without subtending fruits were not significant; 2.5 mm s?1 may be used. Dark respiration (Rd, mg m?2 s?1) increased exponentially with temperature (T°C); Rd~ 0.006 exp (0.09 T). At saturating photon flux density Pn was linearly related to Ci, up to Ci~ 250 mg m?3. Optimum temperatures for Pn were slightly different in the two years and were in the range 16-26°C.  相似文献   

6.
The mid-day responses of wheat ear CO2 and water vapour exchange to full-season CO2 enrichment were investigated using a Free-Air CO2 Enrichment (FACE) apparatus. Spring wheat [Triticum aestivum (L). cv. Yecora Rojo] was grown in two experiments under ambient and elevated atmospheric CO2 (Ca) concentrations (approximately 370 μ mol mol 1 and 550 μ mol mol 1, respectively) combined first with two irrigation (Irr) schemes (Wet: 100% and Dry: 50% replacement of evapotranspiration) and then with two levels of nitrogen (N) fertilization (High: 350, Low: 70 kg ha 1 N). Blowers were used for Ca enrichment. Ambient Ca plots were exposed to blower induced winds as well the Ca × N but not in the Ca × Irr experiment. The net photosynthesis for the ears was increased by 58% and stomatal conductance (gs) was decreased by 26% due to elevated Ca under ample water and N supply when blowers were applied to both Ca treatments. The use of blowers in the Ca-enriched plots only during the Ca × Irr experiment (blower effect) and Low N supply restricted the enhancement of net photosynthesis of the ear due to higher Ca. In the latter case, the increase of net photosynthesis of the ear amounted to 26%. The decrease in gs caused by higher Ca was not affected by the blower effect and N treatment. The mid-day enhancement of net photosynthesis due to elevated Ca was higher for ears than for flag leaves and this effect was most pronounced under ample water and N supply. The contribution of ears to grain filling is therefore likely to increase in higher Ca environments in the future. In the comparison between Wet and Dry, the higher Ca did not alter the response of net photosynthesis of the ear and gs to Irr. However, Ca enrichment increased the drought tolerance of net photosynthesis of the glume and delayed the increase of the awn portion of net photosynthesis of the ear during drought. Therefore, the role of awns for maintaining high net photosynthesis of the ear under drought may decrease when Ca increases.  相似文献   

7.
On the basis of measurements or stand transpiration and microclimate, the bulk stomatal or bulk leaf conductance (gL) of a beech forest in northern Germany was calculated for periods in which leaves were fully expanded and the canopy was dry. This conductance depends strongly on light and humidity conditions above the forest. During periods with photosynthetic photon flux densities Q > 1200 μmol m?2s?1, gL was reduced from 1500mmol m?2s?1 at a vapour pressure deficit D= 0.5kPa to 500 mmol m?2s?1 at D= 2kPa. Light saturation of gL was not reached until Q= 1200 μmol m?2s?1 at low D, or until even higher Q at higher D. The dependence of gL, on Q and D was described mathematically by a non-linear equation that requires two empirical parameters. Values for gL as simulated by this equation provided a satisfactory agreement with independent porometer data collected on single leaves and scaled up to the canopy. A comparison of stomatal and aerodynamic conductances showed a strong coupling between the forest canopy and the atmosphere, indicating that transpiration of the beech forest is controlled mainly by the stomata.  相似文献   

8.
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

9.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

10.
The acclimation of the photosynthetic apparatus of Palmaria palmata (L.) to light intensity was examined in the field and under laboratory conditions. Algae from 3 different shore levels and from laboratory cultures adapted to 6 different photon flux densities were compared. This was done on the basis of light doses, which were delivered by different light regimes in the field and in the laboratory. Laboratory samples were adjusted to constant photon flux densities between 7 and 569 μmol photons·m ? 2·s ? 1 in a 16:8 light:dark photoperiod. Under field conditions the daily amplitudes reached up to approximately 2000 μmol photons·m ? 2·s ? 1 within a natural daily light course. Over the course of 14 days the light doses resulting from those different regimes are similar for both treatments. An increasing growth rate per day with increasing light doses was observed in the laboratory. Growth was saturated at 113 mol photons·m ? 2·14 d ? 1. Light saturation points (Ek) of photosynthesis increased with increasing light doses for both field and laboratory samples, and all Ek values were significantly related to the growth light dose. A correlation between fresh weight‐related lutein content and growth light dose was found for laboratory samples only, whereas the lutein:chlorophyll a (chl a) ratio was strongly correlated with Ek for laboratory and field samples. The content of chl a and phycoerythrin (PE) per fresh weight decreased significantly with increasing light doses under field conditions. Simultaneously, the PE:chl a ratio increased, whereas this ratio was not influenced by laboratory treatments. The correspondence of Ek values for field and laboratory treatments indicated that they were affected mainly by light dose. However, the variability in pigmentation was mainly dependent on temporal variability in light intensity (the amplitude of variations in incident light).  相似文献   

11.
The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil‐vegetation‐atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that relative leaf nitrogen concentration declines with relative irradiance from the top of a canopy to the bottom, in 1 : 1 proportion. In combination with a light transmission model it enables a simple estimate of the vertical profile in leaf nitrogen concentration (which is assumed to determine maximum carboxylation capacity), and in combination with estimates of the fraction of absorbed radiation it also leads to simple ‘big‐leaf’ analytical solutions for canopy photosynthesis. We tested how forests deviate from this condition in five tree canopies, including four broadleaf stands, and one needle‐leaf stand: a mixed‐species tropical rain forest, oak (Quercus petraea (Matt.) Liebl), birch (Betula pendula Roth), beech (Fagus sylvatica L.) and Sitka spruce (Picea sitchensis (Bong.) Carr). Each canopy was studied when fully developed (mid‐to‐late summer for temperate stands). Irradiance (Q, µmol m?2 s?1) was measured for 20 d using quantum sensors placed throughout the vertical canopy profile. Measurements were made to obtain parameters from leaves adjacent to the radiation sensors: maximum carboxylation and electron transfer capacity (Va, Ja, µmol m?2 s?1), day respiration (Rda, µmol m?2 s?1), leaf nitrogen concentration (Nm, mg g?1) and leaf mass per unit area (La, g m?2). Relative to upper‐canopy values, Va declined linearly in 1 : 1 proportion with Na. Relative Va also declined linearly with relative Q, but with a significant intercept at zero irradiance (P < 0·01). This intercept was strongly related to La of the lowest leaves in each canopy (P < 0·01, r2 = 0·98, n= 5). For each canopy, daily lnQ was also linearly related with lnVa(P < 0·05), and the intercept was correlated with the value for photosynthetic capacity per unit nitrogen (PUN: Va/Na, µmol g?1 s?1) of the lowest leaves in each canopy (P < 0·05). Va was linearly related with La and Na(P < 0·01), but the slope of the Va : Na relationship varied widely among sites. Hence, whilst there was a unique Va : Na ratio in each stand, acclimation in Va to Q varied predictably with La of the lowest leaves in each canopy. The specific leaf area, Lm(cm2 g?1), of the canopy‐bottom foliage was also found to predict carboxylation capacity (expressed on a mass basis; Vm, µmol g?1 s?1) at all sites (P < 0·01). These results invalidate the hypothesis of full acclimation to irradiance, but suggest that La and Lm of the most light‐limited leaves in a canopy are widely applicable indicators of the distribution of photosynthetic capacity with height in forests.  相似文献   

12.
Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.  相似文献   

13.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

14.
Photon requirements for O2-evolution in red (λ=680nm) light (Фr) were measured for six C3 species, one C3-like, C3–C4 intermediate species, and three C4 species, including examples of NADP-malic enzyme and PEP-carboxykinase C4 sub-groups. Variation in Фr within the C3 species was small with a mean value of 7.96 ±0.12 mol photon mol−1 O2, whereas the mean value for the C4 species was 12.27± 1.53 mol photon mol−1 O2, with the lowest value, 9.24 ±0.13 mol photon mol−1 O2, for the PEP-carboxykinase C4 species Spartina townsendii. The C3–C4 intermediate species Panicum milioides had a value of 9.05 ±0.29 mol photon mol−1 O2, approximately 1 mol photon mol−1 O2 greater than the C3 species. The possibility that this extra cost is due to PEP-carboxylase-dependent recycling of CO2 is discussed. No correlation was found between Фr and chlorophyll content or leaf absorptance. Based on white (ФW) and red light measurements of the photon requirement, values in red light were approximately 20% higher than white-light estimates. These results are discussed with reference to accepted mechanisms of energy transduction in thylakoid membranes (Z-scheme), expected inefficiencies and losses during light-harvesting and electron transport reactions, and the influence of respiratory processes.  相似文献   

15.
Abstract Nitrate limited growth of the diatom Phaeodactylum tricornutum in chemostat cultures produced marked changes in biochemical composition and a six-fold reduction in the specific growth rate. This was associated with a reduction in the carbon and chlorophyll a specific light saturated rates, with little effect on light limited photosynthesis. Variations in specific growth rate were quantitatively related to carbon specific net photosynthesis and maximum chlorophyll a specific light saturated rates were positively correlated with cell nitrogen contents. The correlation between nitrogen content and photosynthesis for P. tricornutum and the differential effect of nitrogen supply on the light response curve of photosynthesis is qualitatively and quantitatively similar to published results for terrestrial vascular plants. There was little change in the photon (quantum) yield of photosynthesis which was not significantly different from 0.125mol O2 mol photon-1 the theoretical upper limit based on the Z scheme, even under severe nitrate deficiency. The capacity to maintain a high photon yield under nitrate limitation is discussed in relation to the nitrogen requirements of the stromal and membrane components of the photosynthetic apparatus.  相似文献   

16.
Abstract Field gas exchange measurements on intact peach (Prunus persica (L.) Batsch) leaves indicate that leaf nitrogen content (NL) and leaf weight per unit leaf area (Wa) are highly correlated with CO2 assimilation rate (A) and mesophyll conductance (gm). Therefore, NL and Wa were used to study seasonal relationships between leaf carboxylation capacity and natural light exposure in tree canopies. From mid-season onwards, NL and Wa were linearly correlated with light exposure expressed as the amount of time during a clear day that a leaf was exposed to a photosynthetic photon flux density (Q) of ≥ 100 μmol m?2 s?1. The data support the hypothesis that whole-tree photosynthesis is optimized by partitioning of photosynthetic capacity among leaves in deciduous tree canopies with respect to natural light exposure.  相似文献   

17.
The extent to which the parasitic angiosperm Striga hermonthica reduces the growth of its sorghum host is dependent on the concentration of nitrogen (as NH4NO3 in 40% Long Ashton Solution) supplied to the plants. The biomass of 0.5,1 and 2 mol m?3 N-grown infected plants was 22,30 and 66%, respectively, of uninfected plants after 140d growth. The biomass of 3 and 4 mol m?3 N-grown infected plants differed little from uninfected plants. No grain was set in 0.5 and 1 mol m?3 N-grown infected plants, grain yield reached 42 and 73% of controls in 2 and 3 mol m?3 N-grown plants, and was unaffected in 4 mol m?3 N-grown plants. Striga hermonthica also altered the allometry and architecture of the host, at all but the highest N concentration. Higher N concentration (3 and 4 mol m ?3 N) reduced the growth of S. hermonthica. Foliar N concentrations in sorghum ranged from 11 mg g?1 dwt. in 0.5 mol m?3 N-grown plants, to 28 mg g?1 dwt. in 4 mol m?3 N-grown plants, and were not affected by S. hermonthica. Higher N concentrations were measured in S. hermonthica, and ranged from 18 to 45 mg g?1 dwt. in 0.5 and 3 mol m?3 N-grown plants, respectively. The relationship between photosynthesis (CO2 flux) and N concentration differed between uninfected and infected sorghum. This was most apparent in 0.5 mol m?3 N-grown plants, with rates of 16 and 11 μmol m?2 s?1 in uninfected and infected plants, respectively (at 1500–1800 μmol m?2 s?1 photosynthetic photon flux density). At higher N concentrations, this difference was smaller, with both sets of plants reaching 26 μmol m?2 s?1 at 4 mol m?3 N. Varying the level of S. hermonthica infection showed that the effect of N on host photosynthesis cannot be explained by differences in the mass or number of parasites supported by the host. At low levels of infection in 1 mol m?3 N-grown plants, the negative effect of the parasite was reversed, and photosynthesis in infected plants exceeded that in uninfected plants by 20%. Photosynthesis in S. hermonthica at 3 mol m?3 N (8 μmol m?2 s?1) was double that in 0.5 mol m?3 N-grown plants. Stable carbon isotope and gas exchange measurements data demonstrated that this higher level of autotrophic carbon fixation was accompanied by a lower dependency on hetero trophic carbon. The latter ranged from 27 to 6% in 0 5 mol m?3 and 3 mol m?3 N-grown plants, respectively.  相似文献   

18.
The carbon dioxide concentrating system in C4 photosynthesis allows high net photosynthetic rates (P N) at low internal carbon dioxide concentrations (C i), permitting higher P N relative to stomatal conductance (g s) than in C3 plants. This relation would be reflected in the ratio of C i to external ambient (C a) carbon dioxide concentration, which is often given as 0.3 or 0.4 for C4 plants. For a C a of 360 μmol mol−1 that would mean a C i about 110–140 μmol mol−1. Our field observations made near midday on three weedy C4 species, Amaranthus retroflexus, Echinochloa crus-galli, and Setaria faberi, and the C4 crop Sorghum bicolor indicated mean values of C i of 183–212 μ mol mol−1 at C a = 360 μmol mol−1. Measurements in two other C4 crop species grown with three levels of N fertilizer indicated that while midday values of C i at high photon flux were higher at limiting N, even at high nitrogen C i averaged 212 and 196 μmol mol−1 for Amaranthus hypochondriacus and Zea mays, respectively. In these two crops midday C i decreased with increasing leaf to air water vapor pressure difference. Averaged over all measurement days, the mean C i across all C4 species was 198 μmol mol−1, for a C i/C a ratio of 0.55. Prior measurements on four herbaceous C3 species using the same instrument indicated an average C i/C a ratio of 0.69. Hence midday C i values in C 4 species under field conditions may often be considerably higher and more similar to those of C3 species than expected from measurements made on plants in controlled environments. Reducing g s in C4 crops at low water vapor pressure differences could potentially improve their water use efficiency without decreasing P N.  相似文献   

19.
The ability to concentrate CO2 around Rubisco allows C4 crops to suppress photorespiration. However, as phosphoenolpyruvate regeneration requires ATP, the energetic efficiency of the C4 pathway at low photosynthetic flux densities (PFD) becomes a balancing act between primary fixation and concentration of CO2 in mesophyll (M) cells, and CO2 reduction in bundle sheath (BS) cells. At low PFD, retro‐diffusion of CO2 from BS cells, relative to the rate of bicarbonate fixation in M cells (termed leakiness φ), is known to increase. This paper investigates whether this increase in ? could be explained by incomplete inhibition of photorespiration. The PFD response of φ was measured at various O2 partial pressures in young Zea mays plants grown at 250 (LL) and 750 µmol m?2 s?1 PFD (HL). φ increased at low PFD and was positively correlated with O2 partial pressure. Low PFD during growth caused BS conductance and interveinal distance to be lower in the LL plants, compared to the HL plants, which correlated with lower φ. Model analysis showed that incomplete inhibition of photorespiration, especially in the HL plants, and an increase in the relative contribution of mitochondrial respiration at low PFD could explain the observed increases in φ.  相似文献   

20.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号