首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study describes the synthesis, characterization, and reactivity of new methoxypoly(ethylene glycol) (mPEG) derivatives containing a thioimidoester reactive group. These activated polymers are able to react with the lysyl epsilon-amino groups of suitable proteins, generating an amidinated linkage and thereby preserving the protein's positive charge. mPEG derivatives of molecular weight 2000 and 5000 Da were used, and two spacer arms were prepared, introducing chains of different lengths between the hydroxyl group of the polymer and the thioimidate group. These mPEG derivatives were used to modify gelonin, a cytotoxic single-chain glycoprotein widely used in preparation of antitumoral conjugates, whose biological activity is strongly influenced by charge modification. The reactivity of mPEG thioimidates toward lysil epsilon-amino groups of gelonin was evaluated, and the results showed an increased degree of derivatization in proportion to the molar excesses of the polymer used and to the length of the alkyl spacer. Further studies showed that the thioimidate reactive is able to maintain gelonin's significant biological activity and immunogenicity. On the contrary, modification of the protein with N-hydroxysuccinimide derivative of mPEG strongly reduces the protein's cytotoxic activity. Evaluation of the pharmacokinetic behavior of native and PEG-grafted gelonin showed a marked increase in plasma half-life after protein PEGylation; in particular, the circulating life of the conjugates increased with increased molecular weight of the polymer used. The biodistribution test showed lower organ uptake after PEGylation, in particular by the liver and spleen.  相似文献   

2.
Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers   总被引:1,自引:0,他引:1  
CPT-11, also known as irinotecan, is a prodrug that is approved for the treatment of advanced colorectal cancer. The active metabolite of CPT-11, SN38 (7-ethyl-10-hydroxy-camptothecin), has 100- to 1000-fold more potent cytotoxic activity in tissue cell culture compared with CPT-11. However, parental administration of SN38 is not possible because of its inherently poor water solubility. It is reported here that a multiarm poly(ethylene glycol) (PEG) backbone linked to four SN38 molecules (PEG-SN38) has been successfully prepared with high drug loading and significantly improved water solubility (400- to 1000-fold increase). Three different protecting strategies have been developed in order to selectively acylate the 20-OH of SN38 to preserve its E-ring in the lactone form (the active form of SN38 with cytotoxic activities) while PEG is still attached. One chemical process has been optimized to make a large quantity of the PEG-SN38 conjugate with a high yield that can be readily adapted for scale-up production. The PEG-SN38 conjugates have shown excellent in vitro anticancer activity, with potency similar to that of native SN38, in a panel of cancer cell lines. The PEG-SN38 conjugates also have demonstrated superior anticancer activity in the MX-1 xenograft mice model compared with CPT-11. Among the four conjugates, PEG-Gly-(20)-SN38 (23) has been selected as the lead candidate for further preclinical development.  相似文献   

3.
Prospective biomedical applications of hollow polyelectrolyte microcapsules, for example, as drug delivery systems, require surface modifications that help to escape clearance by the mononuclear phagocytic system (MPS). Layer-by-layer assembled microcapsules that were alternatingly composed of polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) were coated with adlayers of poly(ethylene glycol) (PEG)-grafted poly-L-lysine (PLL-g-PEG) and poly-L-glutamic acid (PGA-g-PEG). Their effects on MPS recognition were studied in primary cell cultures of human monocyte derived dendritic cells and macrophages. PGA-g-PEG coatings had no significant effect on cellular recognition, which may be explained by insufficient PEG density of the adlayer. Contrary, PLL-g-PEG effectively blocked phagocytosis of coated microcapsules. In addition, PLL-g-PEG coatings showed efficient adlayer stability for at least 3 weeks, and PAH/PSS microcapsules did not impair phagocyte viability. Our results demonstrate that layer-by-layer assembled polyelectrolyte microcapsules coated with a PEG-grafted polyelectrolyte, PLL-g-PEG, represent a promising platform for a drug delivery system that escapes fast clearance by the MPS.  相似文献   

4.
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.  相似文献   

5.
Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice.  相似文献   

6.
Here we describe the fabrication and preservation of mammalian cell-containing hydrogel microarrays that have potential applications in drug screening and pathogen detection. Hydrogel microstructures containing murine fibroblasts were fabricated on silicon substrates and subjected to a "stage-down" freezing process. The percent viability of both immortal and primary embryonic murine fibroblast cells within the gels was determined at various stages in the freezing process, showing that cells entrapped in hydrogel microstructures remained viable throughout the process. When compared to immortalized adherent cultures subjected to the same freezing process, cells within hydrogel structures had higher cell viabilities at all stages during preservation. Finally, the necessity of using a cryoprotectant, dimethyl sulfoxide (DMSO), was investigated. Cells in hydrogels were cryopreserved with and without DMSO. The addition of DMSO altered cell viability after the freeze-thaw process, enhancing viability in an immortalized cell line and decreasing viability in a primary cell line.  相似文献   

7.
Covalently grafting proteins with varying numbers (n) of poly(ethylene glycol) molecules (PEGs) often enhances their biomedical and industrial usefulness. Partition between the phases in aqueous polymer two-phase systems can be used to rapidly characterize polymer-protein conjugates in a manner related to various enhancements. The logarithm of the partition coefficient (K) approximates linearity over the range 0<n<x. However, x varies with the nature of the conjugate (e.g., protein molecular mass) and such data analysis does not facilitate the comparison of varied conjugates. The known behavior of surface localized PEGs suggests a better correlation should exist between log K and the weight fraction of polymer in PEG-protein conjugates. Data from four independent studies involving three proteins (granulocyte-macrophage colony stimulation factor, bovine serum albumin and immunoglobulin G) has been found to support this hypothesis. Although somewhat simplistic, ‘weight fraction’ based analysis of partition data appears robust enough to accommodate laboratory to laboratory variation in protein, polymer and phase system type. It also facilitates comparisons between partition data involving disparate polymer-protein conjugates.  相似文献   

8.
Jain A  Ashbaugh HS 《Biomacromolecules》2011,12(7):2729-2734
Hybrid polymer-peptide conjugates offer the potential for incorporating biological function into synthetic materials. The secondary structure of short helical peptides, however, frequently becomes less stable when expressed independent of longer protein sequences or covalently linked with a conformationally disordered synthetic polymer. Recently, new amphipathic peptide-poly(ethylene glycol) conjugates were introduced (Shu, J., et al. Biomacromolecules 2008, 9, 2011), which displayed enhanced peptide helicity upon polymer functionalization while retaining tertiary coiled-coil associations. We report here a molecular simulation study of peptide helix stabilization by conjugation with poly(ethylene glycol). The polymer oxygens are shown to favorably interact with the cationic lysine side chains, providing an alternate binding site that protects against disruption of the peptide hydrogen-bonds that stabilize the helical conformation. When the peptide lysine charges are neutralized or poly(ethylene glycol) is conjugated with polyalanine, the polymer exhibits a negligible effect on the secondary structure. We also observe the interactions of poly(ethylene glycol) with the amphipathic peptide lysines tends to segregate the polymer away from the nonpolar face of the helix, suggesting no disruption of the interactions that drive tertiary contacts between helicies.  相似文献   

9.
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer–protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed.  相似文献   

10.
Mechanism of poly(ethylene glycol) interaction with proteins   总被引:10,自引:0,他引:10  
T Arakawa  S N Timasheff 《Biochemistry》1985,24(24):6756-6762
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature.  相似文献   

11.
Abstract

Candida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents.  相似文献   

12.
A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties: low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254-266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG-methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding.  相似文献   

13.
14.
Poly(ethylene oxide sulfide) (PEOS), polymers consisting of an internal ethylene oxide oligomer and disulfide linkage, were synthesized and characterized. The degree of polymerization was dependent upon temperature, dimethyl sulfoxide condition, and monomer hydrophobicity. The stability of PEOS was measured by the size exclusion chromatography method after the incubation both with and without 5 mM glutathione. The disulfide bond was stable in the extracellular condition but completely degraded in 2 h in the reductive cytosolic condition. Hydrophilic PEOS polymers showed no cytotoxicity on the HepG2 cell line. On the basis of these properties, PEOS can be applied in many drug delivery fields.  相似文献   

15.
Interaction of phospholipid membranes with poly(ethylene glycol)s   总被引:4,自引:0,他引:4  
1. The water-soluble polymer, poly(ethylene glycol), causes concentration-dependent increases in the temperature of the gel--liquid crystalline phase transitions of aqueous dispersions of dipalmitoyl phosphatidylcholine and of dipalmitoyl phosphatidylethanolamine. 2. For dipalmitoyl phosphatidylcholine it has been further demonstrated that poly(ethylene glycol) increases the transition enthalpy and entropy while decreasing the cooperativity of the transition. 3. These results are discussed in relation to the possible modes of action of poly(ethylene glycol) in promoting cell fusion.  相似文献   

16.
We present results on using cooperative interactions to shield liposomes by incorporating multiple hydrophobic anchoring sites on polyethylene glycol (PEG) polymers. The hydrophobically-modified PEGs (HMPEGs) are comb-graft polymers with strictly alternating monodisperse PEG blocks (Mw=6, 12, or 35 kDa) bonded to C18 stearylamide hydrophobes. Cooperativity is varied by changing the degree of oligomerization at a constant ratio of PEG to stearylamide. Fusogenic liposomes prepared from N-C12-DOPE:DOPC 7:3 (mol:mol) were equilibrated with HMPEGs. Affinity for polymer association to liposomes increases with the degree of oligomerization; equilibrium constants (given as surface coverage per equilibrium concentration of free polymer) for 6 kDa PEG increased from 6.1±0.8 (mg/m2)/(mg/ml) for 2.5 loops to 78.1±12.2 (mg/m2)/(mg/ml) for 13 loops. In contrast, the equilibrium constant for distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG5k) was 0.4±0.1 (mg/m2)/(mg/ml).The multi-loop HMPEGs demonstrate higher levels of protection from complement binding than DSPE-PEG5k. Greater protection does not correlate with binding strength alone. The best shielding was by HMPEG6k-DP3 (with three 6 kDa PEG loops), suggesting that PEG chains with adequate surface mobility provide optimal protection from complement opsonization. Complement binding at 30 min and 12 h demonstrates that protection by multi-looped PEGs is constant whereas DSPE-PEG5k initially protects but presumably partitions off of the surface at longer times.  相似文献   

17.
A poly(ethylene glycol) (PEG)-based matrix for studies of affinity interactions is developed and demonstrated. The PEG matrix, less than 0.1 microm thick, is graft copolymerized onto a cycloolefin polymer from a mixture of PEG methacrylates using a free radical reaction initiated by UV light at 254 nm. The grafting process is monitored in real time, and characteristics such as thickness, homogeneity, relative composition, photostability, and performance in terms of protein resistance in complex biofluids and sensor qualities are investigated with null ellipsometry, infrared spectroscopy, and surface plasmon resonance. The matrix is subsequently modified to contain carboxyl groups, thereby making it possible to immobilize ligands in a controlled and functional manner. Human serum albumin and fibrinogen are immobilized and successfully detected by antibody recognition using surface plasmon resonance. The results are encouraging and suggest that the PEG matrix is suitable for biochip and biosensor applications in demanding biofluids.  相似文献   

18.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

19.
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups. In the case of PEG-DOPAs containing two or more DOPA endgroups, oxidative polymerization resulted in polymer network formation and rapid gelation. The amount of time required for gelation of aqueous PEG-DOPA solutions was found to be as little as 1 min and was dependent on the polymer architecture as well as the type and concentration of oxidizing reagent used. Analysis of reaction mixtures by UV-vis spectroscopy allowed the identification of reaction intermediates and the elucidation of reaction pathways. On the basis of the observed reaction intermediates, oxidation of the catechol side chain of DOPA resulted in the formation of highly reactive DOPA-quinone, which further reacted to form cross-linked products via one of several pathways, depending on the presence or absence of N-terminal protecting groups on the PEG-DOPA. N-Boc protected PEG-DOPA cross-linked via phenol coupling and quinone methide tanning pathways, whereas PEG-DOPA containing a free amino group cross-linked via a pathway that resembled melanogenesis. Similar differences were observed for the rate of gel formation as well as the molecular weight between cross-links ((-)M(c)), calculated using equilibrium swelling and the Flory-Rehner equation.  相似文献   

20.
Synthesis and characterization of poly(ethylene glycol)-insulin conjugates   总被引:8,自引:0,他引:8  
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号