首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemic lupus erythematosus is inherited as a complex polygenic trait. Four genomic intervals containing major SLE-susceptibility loci were previously identified by interval mapping in the NZM2410 mouse model. In this paper, we utilized a marker-assisted selection protocol to produce four congenic mouse strains, each carrying an NZM2410-derived SLE-susceptibility interval on a C57BL/6-resistant background. Each strain carries only one susceptibility allele derived from this polygenic model and consequently can be used to characterize the specific component phenotypes contributed by individual SLE-susceptibility genes. We illustrate the efficacy of this approach with phenotypic data for one of our congenic strains, B6.NZMH2 z . Our results indicate that this single genomic interval from Chromosome (Chr) 17 of NZM2410 can mediate increased levels of IgG autoantibodies specific for chromatin and that, similar to results obtained in our original genetic cross, B6.NZMH2 z/b heterozygotes are more prone than B6.NZMH2 z homozygotes to the development of humoral autoimmunity to nuclear antigens. These results illustrate the feasibility of using congenic strains to dissect the complex pathogenic mechanisms that mediate polygenic SLE. These congenic strains will be valuable tools in the genetic analysis of SLE susceptibility. In future studies, these congenic strains will be interbred to produce bi- and tri-congenic strains in order to assess the role of genetic interactions in the expression of specific components of SLE pathogenesis. They will also be instrumental to the positional cloning and identification of the genes responsible for SLE susceptibility, via the production of congenic recombinants. Received: 1 September 1995 / Accepted: 20 December 1995  相似文献   

2.
Polyclonal, generalized T cell defects, as well as Ag-specific Th clones, are likely to contribute to pathology in murine lupus, but the genetic bases for these mechanisms remain unknown. Mapping studies indicate that loci on chromosomes 1 (Sle1), 4 (Sle2), 7 (Sle3), and 17 (Sle4) confer disease susceptibility in the NZM2410 lupus strain. B6.NZMc7 mice are C57BL/6 (B6) mice congenic for the NZM2410-derived chromosome 7 susceptibility interval, bearing Sle3. Compared with B6 controls, B6.NZMc7 mice exhibit elevated CD4:CD8 ratios (2.0 vs 1.34 in 1- to 3-mo-old spleens); an age-dependent accumulation of activated CD4+ T cells (33.4% vs 21.9% in 9- to 12-mo-old spleens); a more diffuse splenic architecture; and a stronger immune response to T-dependent, but not T-independent, Ags. In vitro, Sle3-bearing T cells show stronger proliferation, increased expansion of CD4+ T cells, and reduced apoptosis (with or without anti-Fas) following stimulation with anti-CD3. With age, the B cells in this strain acquire an activated phenotype. Thus, the NZM2410 allele of Sle3 appears to impact generalized T cell activation, and this may be causally related to the low grade, polyclonal serum autoantibodies seen in this strain. Epistatic interactions with other loci may be required to transform this relatively benign phenotype into overt autoimmunity, as seen in the NZM2410 strain.  相似文献   

3.
High dietary fat intake and obesity may increase susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F2 mice either a very-high-fat or a matched-control-fat diet and measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL × diet interaction effects. Here we describe development of the F2 population (n = 615) which resulted from a cross between the polygenic obesity model M16i and FVB/NJ-TgN (MMTV-PyMT)634Mul, effects of diet on growth and body composition, and QTL and QTL × diet and/or gender interaction effects for growth and obesity-related phenotypes. We identified 38 QTL for body composition traits that were significant at the genome-wide 0.05 level, likely representing nine distinct loci after accounting for pleiotropic effects. QTL × diet and/or gender interactions were present at 15 of these QTL, indicating that such interactions play a significant role in defining the genetic architecture of complex traits such as body weight and obesity.  相似文献   

4.
Lupus pathogenesis in the NZM2410 mouse model results from the expression of multiple interacting susceptibility loci. Sle2 on chromosome 4 was significantly linked to glomerulonephritis in a linkage analysis of a NZM2410 x B6 cross. Yet, Sle2 expression alone on a C57BL/6 background did not result in any clinical manifestation, but in an abnormal B cell development, including the accumulation of B-1a cells in the peritoneal cavity and spleen. Analysis of B6.Sle2 congenic recombinants showed that at least three independent loci, New Zealand White-derived Sle2a and Sle2b, and New Zealand Black-derived Sle2c, contribute to an elevated number of B-1a cells, with Sle2c contribution being the strongest of the three. To determine the contribution of these three Sle2 loci to lupus pathogenesis, we used a mapping by genetic interaction strategy, in which we bred them to B6.Sle1.Sle3 mice. We then compared the phenotypes of these triple congenic mice with that of previously characterized B6.Sle1.Sle2.Sle3, which express the entire Sle2 interval in combination with Sle1 and Sle3. Sle2a and Sle2b, but not Sle2c, contributed significantly to lupus pathogenesis in terms of survival rate, lymphocytic expansion, and kidney pathology. These results show that the Sle2 locus contains several loci affecting B cell development, with only the two NZW-derived loci having the least effect of B-1a cell accumulation significantly contributing to lupus pathogenesis.  相似文献   

5.
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.  相似文献   

6.
High dietary fat intake and obesity may increase the risk of susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F2 mice either a very high-fat or a matched-control-fat diet, and we measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL × diet interaction effects. Here we describe effects of diet on mammary tumor and metastases phenotypes, mapping of tumor/metastasis modifier genes, and the interaction between dietary fat levels and effects of cancer modifiers. Results demonstrate that animals fed a high-fat diet are not only more likely to experience decreased mammary cancer latency but increased tumor growth and pulmonary metastases occurrence over an equivalent time. We identified 25 modifier loci for mammary cancer and pulmonary metastasis, likely representing 13 unique loci after accounting for pleiotropy, and novel QTL × diet interactions at a majority of these loci. These findings highlight the importance of accurately modeling not only the human cancer characteristics in mice but also the environmental exposures of human populations.  相似文献   

7.
8.
The development of organ-specific autoimmune diseases in mice thymectomized on day 3 of life (d3tx mice) can be prevented by transferring CD4(+)CD25(+) T cells from syngeneic, normal adult mice. Using a d3tx model, we asked whether CD4(+)CD25(+) T cell deficiency contributes to glomerulonephritis (GN) in lupus-prone mice. New Zealand Mixed 2328 (NZM2328) mice spontaneously develop autoantibodies to dsDNA and female-dominant, fatal GN. After d3tx, both male and female NZM2328 mice developed 1) accelerated dsDNA autoantibody response, 2) early onset and severe proliferative GN with massive mesangial immune complexes, and 3) autoimmune disease of the thyroid, lacrimal gland, and salivary gland. The d3tx male mice also developed autoimmune prostatitis. The transfer of CD25(+) cells from 6-wk-old asymptomatic NZM2328 donors effectively suppressed dsDNA autoantibody and the development of autoimmune diseases, with the exception of proliferative lupus GN and sialoadenitis. This finding indicates that NZM2328 lupus mice have a selective deficiency in T cells that regulates the development of lupus GN and sialoadenitis. After d3tx, the proliferative GN of female mice progressed to fatal GN, but largely regressed in the male, thereby revealing a checkpoint in lupus GN progression that depends on gender.  相似文献   

9.
While diabetic patients often present with comorbid depression, the underlying mechanisms linking diabetes and depression are unknown. The Wistar Kyoto (WKY) rat is a well-known animal model of depression and stress hyperreactivity. In addition, the WKY rat is glucose intolerant and likely harbors diabetes susceptibility alleles. We conducted a quantitative trait loci (QTL) analysis in the segregating F2 population of a WKY × Fischer 344 (F344) intercross. We previously published QTL analyses for depressive behavior and hypothalamic-pituitary-adrenal (HPA) activity in this cross. In this study we report results from the QTL analysis for multiple metabolic phenotypes, including fasting glucose, post-restraint stress glucose, postprandial glucose and insulin, and body weight. We identified multiple QTLs for each trait and many of the QTLs overlap with those previously identified using inbred models of type 2 diabetes (T2D). Significant correlations were found between metabolic traits and HPA axis measures, as well as forced swim test behavior. Several metabolic loci overlap with loci previously identified for HPA activity and forced swim behavior in this F2 intercross, suggesting that the genetic mechanisms underlying these traits may be similar. These results indicate that WKY rats harbor diabetes susceptibility alleles and suggest that this strain may be useful for dissecting the underlying genetic mechanisms linking diabetes, HPA activity, and depression.  相似文献   

10.
11.
To elucidate the genetic factors underlying non-insulin-dependent diabetes mellitus (NIDDM), we performed genome-wide quantitative trait locus (QTL) analysis, using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is an excellent animal model of NIDDM because the features of the disease closely resemble human NIDDM. Genetic dissection with two kinds of F2 intercross progeny, from matings between the OLETF rat and non-diabetic control rats F344 or BN, allowed us to identify on Chromosome (Chr) 1 a major QTL associated with features of NIDDM that was common to both crosses. We also mapped two additional significant loci, on Chrs 7 and 14, in the (OLETF × F344)F2 cross alone, and designated these three loci as Diabetes mellitus, OLETF type Dmo 1, Dmo2 and Dmo3 respectively. With regard to suggestive QTLs, we found loci on Chrs 10, 11, and 16 that were common to both crosses, as well as loci on Chrs 5 and 12 in the (OLETF × F344)F2 cross and on Chrs 4 and 13 in the (OLETF × BN)F2 cross. Our results showed that NIDDM in the OLETF rat is polygenic and demonstrated that different genetic backgrounds could affect ``fitness' for QTLs and produce different phenotypic effects from the same locus. Received: 9 October 1997 / Accepted: 29 January 1998  相似文献   

12.
Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10−13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).  相似文献   

13.
Inheritance of resistance to the anti-microtubule dinitroaniline herbicides was investigated in a goosegrass biotype displaying an intermediate level of resistance (I). Reciprocal crosses were made between the I biotype and previously characterized susceptible (S) or resistant (R) biotypes. Eight F1 hybrids were identified, and F2 populations were produced by selfing. The dinitroaniline-herbicide response phenotype (DRP) of F1 plants, and F2 seedlings was determined using a root-growth bioassay. The DRP of F1 plants of S × I was “susceptible” (i.e., identical to the S parental plants), and the DRP of F1 plants of I × R was “intermediate” (i.e., identical to the I parental plants). Nonparental phenotypes were not observed in F1 plants. Results indicated susceptibility to be dominant over intermediate resistance and intermediate resistance to be dominant over high resistance. Analysis of reciprocal crosses ruled out any role for cytoplasmic inheritance. When treated at the discriminating concentration (e.g., 0.28 ppm oryzalin), F2 seedlings of S × I were classified as either S or I phenotype, and F2 seedlings of I × R were classified as either I or R phenotype. Again, nonparental phenotypes were not observed. The 3:1 (S:I or I:R) segregation ratios in F2 seedlings were consistent across all eight F2 families. The results show that dinitroaniline herbicide resistance in the I biotype of goosegrass is inherited as a single, nuclear gene. Furthermore, it suggests that dinitroaniline resistance in goosegrass is controlled by three alleles at a single locus (i.e., Drp-S, Drp-i, and Drp-r).  相似文献   

14.
Chronic estrogen administration can lead to thymic atrophy in rodents. In this article we report that the Brown Norway (BN) rat is sensitive to thymic atrophy induced by the estrogen diethylstilbestrol (DES). By contrast, DES does not induce significant thymic atrophy in the August × Copenhagen-Irish (ACI) strain. The sensitivity of the BN rat to DES-induced thymic atrophy appears to segregate as an incompletely dominant trait in crosses between the BN and ACI strains. In a (BN × ACI)F2 population, we find strong evidence for three major genetic determinants of sensitivity to DES-induced thymic atrophy on rat Chromosome (RNO) 10 and RNO2. Genotypes at these loci, termed Esta1, 2, and 3, do not have a significant impact on the ability of DES to induce pituitary tumorigenesis or inhibit growth of these F2 rats. These data indicate that the genetic factors that control DES-induced thymic atrophy are distinct from those that control the effects of DES on pituitary mass and body mass. The Esta intervals on RNO10 and RNO2 overlap with loci that control sensitivity to radiation-induced thymocyte apoptosis, as well as susceptibility to a variety of allergic and autoimmune pathologies, including allergic encephalitis, arthritis, and glomerulonephritis in rodents. These observations suggest that common genetic determinants may control sensitivity to estrogen-induced thymic atrophy, maintenance of thymocyte homeostasis, and immune function.  相似文献   

15.
We have constructed the linkage map with precise genetic analysis of the Syrian hamster, Mesocricetus auratus, according to the restriction landmark genomic scanning (RLGS) spot mapping method. Although only 3.2–6.6% of the total RLGS spots between the two strains, ACN and BIO 14.6, showed genetic variance, 572 loci were found to be polymorphic. Out of 569 RLGS loci and 3 other loci, 531 were mapped with the backcross (ACN × BIO 14.6) F1× BIO 14.6. The cumulative map was 1111.6 cM, indicating that the spots/loci are located throughout the genome at 1.94 cM intervals on average. Thus, RLGS provides us with a rapid tool to construct the genetic map of any species, even if it has less genetic variation. Received: 15 July 1996 / Accepted: 25 September 1996  相似文献   

16.
Systemic lupus erythematosus and its murine equivalent, modelled in the New Zealand Black and New Zealand White (NZB × NZW)F1 hybrid strain, are polygenic inflammatory diseases, probably reflecting an autoimmune response to debris from cells undergoing programmed cell death. Several human and murine loci contributing to disease have been defined. The present study asks whether the proinflammatory purinergic receptor P2X7, an initiator of a form of programmed cell death known as aponecrosis, is a candidate product of murine and human lupus susceptibility loci. One such locus in (NZB × NZW)F1 mice is lbw3, which is situated at the distal end of NZW chromosome 5. We first assess whether NZB mice and NZW mice carry distinct alleles of the P2RX 7 gene as expressed by common laboratory strains, which differ in sensitivity to ATP stimulation. We then compare the responses of NZB lymphocytes, NZW lymphocytes and (NZB × NZW)F1 lymphocytes to P2X7 stimulation. NZB and NZW parental strains express the distinct P2X7-L and P2X7-P alleles of P2RX 7, respectively, while lymphocytes from these and (NZB × NZW)F1 mice differ markedly in their responses to P2X7 receptor stimulation. NZB mice and NZW mice express functionally distinct alleles of the proinflammatory receptor, P2X7. We show that current mapping suggests that murine and human P2RX 7 receptor genes lie within lupus susceptibility loci lbw3 and SLEB4, and we argue that these encode a product with the functional characteristics consistent with a role in lupus. Furthermore, we argue that aponecrosis as induced by P2X7 is a cell death mechanism with characteristics that potentially have particular relevance to disease pathogenesis.  相似文献   

17.
An RFLP linkage map of Upland cotton, Gossypium hirsutum L.   总被引:15,自引:0,他引:15  
 Ninety-six F2.F3 bulked sampled plots of Upland cotton, Gossypium hirsutum L., from the cross of HS46×MARCABUCAG8US-1-88, were analyzed with 129 probe/enzyme combinations resulting in 138 RFLP loci. Of the 84 loci that segregated as co-dominant, 76 of these fit a normal 1 :  2 : 1 ratio (non-significant chi square at P=0.05). Of the 54 loci that segregated as dominant genotypes, 50 of these fit a normal 3: 1 ratio (non-significant chi square at P=0.05). These 138 loci were analyzed with the MAPMAKER∖ EXP program to determine linkage relationships among them. There were 120 loci arranged into 31 linkage groups. These covered 865 cM, or an estimated 18.6% of the cotton genome. The linkage groups ranged from two to ten loci each and ranged in size from 0.5 to 107 cM. Eighteen loci were not linked. Received: 31 March 1998 / Accepted: 29 April 1998  相似文献   

18.
The identification of cancer susceptibility- and resistance-mediating genes is an essential prerequisite for prevention and early diagnosis of malignant tumors. Model organisms are helpful to identify variant alleles involved in pathways affecting individual cancer risk. BDIX and BDIV rats of both sexes are highly susceptible and resistant, respectively, to the development of N-ethyl-N-nitrosourea (ENU)-induced malignant peripheral nerve sheath tumors (MPNST), predominantly in the trigeminal nerves. Nevertheless, female (BDIV × BDIX) F2 intercross rats have a lower MPNST incidence and a longer latency time than males. Six of seven autosomal gene loci (Mss1-Mss7) controlling genetic susceptibility and resistance in (BDIV × BDIX) F2 hybrids exert allele- and sex-specific effects on tumor incidence and/or latency time of variable strength. Homozygous BDIV alleles at Mss4 or Mss7 located on rat chromosomes 6 and 10, respectively, are sufficient to cause almost complete resistance to ENU-induced MPNST development in female F2 rats regardless of the genotype of the other locus. Both loci display only weak effects on male cancer risk. Survival curves of ENU-treated F2 females depleted of animals with homozygous BDIV alleles at Mss4 and Mss7 are not significantly different from those of males, suggesting that these loci account mainly for the excess tumor resistance observed in female F2 rats. By haplotype analysis Mss4 and Mss7 could be narrowed down to 20 and 12 Mb, respectively, providing a basis for the positional identification of candidate genes.  相似文献   

19.
In certain rat strains, chronic estrogen administration can lead to pyometritis, an inflammation of the uterus accompanied by infection and the accumulation of intraluminal pus. In this article, we report that the Brown Norway (BN) rat is highly susceptible to pyometritis induced by 17β-estradiol (E2). The susceptibility of the BN rat to E2-induced pyometritis appears to segregate as a recessive trait in crosses to the resistant August × Copenhagen Irish (ACI) strain. In a (BN × ACI)F2 population, we find strong evidence for a major genetic determinant of susceptibility to E2-induced pyometritis on rat chromosome 5 (RNO5). Our data are most consistent with a model in which the BN allele of this locus, designated Eutr1 (Estrogen-induced uterine response 1), acts in an incompletely dominant manner to control E2-induced pyometritis. Furthermore, we have confirmed the contribution of Eutr1 to E2-induced uterine pyometritis using an RNO5 congenic rat strain. In addition to Eutr1, we obtained evidence suggestive of linkage for five additional loci on RNO2, 4, 11, 17, and X that control susceptibility to E2-induced pyometritis in the (BN × ACI)F2 population.  相似文献   

20.
Four F2 mapping populations derived from crosses between rye inbred lines DS2×RXL10, 541×Ot1-3, S120×S76 and 544×Ot0-20 were used to develop a consensus map of chromosome 6R. Thirteen marker loci that were polymorphic in more than one mapping population constituted the basis for the alignment of the four maps using the JoinMap v. 3.0 software package. The consensus map consists of 104 molecular marker loci including RFLPs, RAPDs, AFLPs, SSRs, ISSRs, SCARs, STSs and isozymes. The average distance between the marker loci is 1.3 cM, and the total map length is 135.5 cM. This consensus map may be used as a source of molecular markers for the rapid development of new maps of chromosome 6R in any mapping population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号