首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The relation between p-aminohippurate uptake and the electrochemical potential gradient of Na+ (delta muNa+) across the peritubular membrane was examined in newt (Triturus pyrrhogaster) kidney. The delta muNa+ was modified by changing cellular Na+ concentration and/or lowering the electrical potential difference across the peritubular membrane (peritubular membrane potential) 2. Elevation of external K+ concentration or addition of alanine at 40 mM to the medium decreased the delta muNa+ mainly through the depolarization of the cells. Addition of 1 mM ouabain resulted in a decrease in the peritubular membrane potential and increase in cellular Na+ concentration, thus decrease in the delta muNa+. 3. p-Aminohippurate uptake decreased in proportion to the decrease in the delta muNa+ under all experimental conditions, indicating that the maintenance of the delta muNa+ is required for p-aminohippurate transport. 4. All three different experimental conditions, high medium K+ concentration, 40 mM alanine or 1 mM ouabain, increased the apparent Michaelis constant, Kt, without affecting the maximal uptake rate, V, for p-aminohippurate. These results suggests that the delta muNa+, largely the peritubular membrane potential, may affect the association and/or dissociation of p-aminohippurate and Na+ at both interfaces of the peritubular membrane of the proximal tubular cells.  相似文献   

2.
Veillonella alcalescens during lactate degradation developed an Na+ concentration gradient with 7-8 times higher external than internal Na+ concentrations in the logarithmic growth phase. The gradient declined to a factor of 1.9 in the late stationary phase. Methylmalonyl-CoA decarboxylase reconstituted into proteoliposomes performed an active electrogenic Na+ transport, creating delta psi of 60 mV, delta pNa+ of 50 mV, and delta mu Na+ of 110 mV. In the initial phase of the transport, the decarboxylase catalyzed the uptake of 2 Na+ ions malonyl-CoA molecule decarboxylated. During further development of the electrochemical Na+ gradient, this ratio gradually declined to zero, when decarboxylation continued without further increase of the internal Na+ concentration. The rate of malonyl-CoA decarboxylation declined initially during development of the membrane potential, but remained unchanged later on. Monensin abolished the Na+ gradient and increased the malonyl-CoA decarboxylation rate 2.8-fold. On dissipating the membrane potential with valinomycin, the internal Na+ concentration reached three times higher values than in its absence, and the decarboxylation rate increased 2.8-fold. Methylmalonyl-CoA decarboxylase catalyzed an exchange of internal and external Na+ ions in addition to net Na+ accumulation. The initial rate of Na+ influx was double that of malonyl-CoA decarboxylation. In the following, both rates decreased about twofold in parallel to values which remained constant during further development of the electrochemical Na+ gradient. Thus, Na+ influx and malonyl-CoA decarboxylation follow a stoichiometry of approximately 2:1, independent of the magnitude of the electrochemical Na+ gradient and are thus highly coupled events.  相似文献   

3.
Accumulation of 2-aminoisobutyrate by mouse ascites tumour cells was studied in circumstances where nigericin reversed the normal direction of the Na+ concentration gradient. The membrane potential (delta psi) was assayed using oxonol V as a voltage-sensitive probe. The amino acid gradient (delta mu A) that formed did not significantly exceed the likely magnitude of the Na+ electrochemical gradient when this was in the range 2-6 kJ mol-1. When delta-Na mu increased up to 11 kJ mol-1, delta mu A was almost constant at 7-8 kJ mol-1. The observations indicate that when delta psi is large changes in cellular [Na+] in the range 16-80 mM scarcely affect delta mu A.  相似文献   

4.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

5.
Amino acid transport was studied in membrane vesicles of the thermophilic anaerobic bacterium Clostridium fervidus. Neutral, acidic, and basic as well as aromatic amino acids were transported at 40 degrees C upon the imposition of an artificial membrane potential (delta psi) and a chemical gradient of sodium ions (delta microNa+). The presence of sodium ions was essential for the uptake of amino acids, and imposition of a chemical gradient of sodium ions alone was sufficient to drive amino acid uptake, indicating that amino acids are symported with sodium ions instead of with protons. Lithium ions, but no other cations tested, could replace sodium ions in serine transport. The transient character of artificial membrane potentials, especially at higher temperatures, severely limits their applicability for more detailed studies of a specific transport system. To obtain a constant proton motive force, the thermostable and thermoactive primary proton pump cytochrome c oxidase from Bacillus stearothermophilus was incorporated into membrane vesicles of C. fervidus. Serine transport could be driven by a membrane potential generated by the proton pump. Interconversion of the pH gradient into a sodium gradient by the ionophore monensin stimulated serine uptake. The serine carrier had a high affinity for serine (Kt = 10 microM) and a low affinity for sodium ions (apparent Kt = 2.5 mM). The mechanistic Na+-serine stoichiometry was determined to be 1:1 from the steady-state levels of the proton motive force, sodium gradient, and serine uptake. A 1:1 stoichiometry was also found for Na+-glutamate transport, and uptake of glutamate appeared to be an electroneutral process.  相似文献   

6.
The ejection of protons from oxygen-pulsed cells and the gradients of Na+ concentration (Na+o/Na+i at 150 mM external NaCl) and proton electrochemical potential (delta mu H+) across the plasma membrane of Anacystis nidulans were studied in response to dark endogenous energy supply. Saturating concentrations of the F0F1-ATPase inhibitors dicyclohexylcarbodiimide (F0) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (F1) eliminated oxidative phosphorylation and lowered the ATP level from 2.6 +/- 0.15 to 0.7 +/- 0.1 nmol/mg dry wt while overall O2 uptake and delta mu H+ were much less affected. H+ efflux was inhibited only 60 to 75%. Aerobic Na+o/Na+i ratios (5.9 +/- 0.6) under these conditions remained 50% above the anaerobic level (2.1 +/- 0.2). Increasing concentrations of the electron transport inhibitors CO and KCN depressed H+ efflux and O2 uptake in parallel, with a pronounced discontinuity of the former at inhibitor concentrations, which reduced ATP levels from 2.6 to 0.8 nmol/mg dry wt, resulting in an abrupt shift of the apparent H+/O ratios from 4.0 +/- 0.3 to 1.9 +/- 0.2. Similarly, with KCN and CO the Na+o/Na+i ratios paralleled decreasing respiration rates more closely than decreasing ATP pool sizes. Ejection of protons also was observed when intact spheroplasts were pulsed with horse heart ferrocytochrome c or ferricyanide; the former reaction was inhibited, the latter was increased, by 1 mM KCN. Measurements of the proton motive force (delta mu H+) across the plasma membrane showed a strong correlation with respiration rates rather than ATP levels. It is concluded that the plasma membrane of intact A. nidulans can be directly energized by proton-translocating respiratory electron transport in the membrane and that part of this energy may be used by a Na+/H+ antiporter for the active exclusion of Na+ from the cell interior.  相似文献   

7.
An inward-directed H+ gradient markedly stimulated lactate uptake in rabbit intestinal brush-border membrane vesicles, and uphill transport against a concentration gradient could be demonstrated under these conditions. Uptake of lactate was many-fold greater in the presence of a H+ gradient than in the presence of a Na+ gradient. Moreover, there was no evidence for uphill transport of lactate in the presence of a Na+ gradient. The H+-gradient-dependent stimulation of lactate uptake was not due to the effect of a H+-diffusion potential. The uptake process in the presence of a H+ gradient was saturable [Kt (concn. giving half-maximal transport) for lactate 12.7 +/- 4.5 mM] and was inhibited by many monocarboxylates. It is concluded that a H+ gradient, not a Na+ gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.  相似文献   

8.
Kinetics of the intestinal brush border proline (Imino) carrier   总被引:2,自引:0,他引:2  
The kinetics of L-proline transport across intestinal brush borders via the Imino carrier were studied using membrane vesicles. The Imino carrier is defined as the agent responsible for L-alanine insensitive. Na+-dependent uptake of L-proline. Initial rate measurements were made under voltage clamped conditions (pD = 0) to investigate L-proline transport as a function of cis and trans Na+ and proline concentrations. Under zero-trans conditions, increasing cis Na+ activated proline uptake with a Hill coefficient of 1.7 and decreased the apparent Kt with no change in Jimax. The Jimax was approximately 60 pmol mg-1 s-1 and the apparent Kt ranged from 0.25 mM at cis Na = 100 to 1.0 mM at cis Na+ = 30 mM. Trans Na inhibited proline uptake via a reduction in Jimax. Trans proline had no significant effect in the absence of trans Na+, but it relieved the trans Na+ inhibition. Under equilibrium exchange conditions, the Jimax was twice that observed under zero-trans conditions. These kinetics of L-proline transport suggest a model in which uptake occurs by a rapid equilibrium iso-ordered ter ter system. Two Na+ ions bind first to the carrier on the cis face of the membrane to increase the affinity of the carrier for proline. The fully loaded complex then isomerizes to release the substrates to the trans side. The partially loaded Na+-only forms are unable to translocate across the membrane. A rate-limiting step appears to be the isomerization of unloaded carrier from the trans to the cis side of the membrane.  相似文献   

9.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

10.
The dependence of L-alanine uptake by 3T6 and CHO-K1 cells on Na+ electrochemical gradient has been studied. The Na+ chemical gradient was changed by a short-term (partial or complete) replacement of Na+ for choline. The membrane potential change was achieved by addition of potassium ionophore--valinomycin (10 microM) into the medium. It is determined that the value of Km for alanine uptake by 3T6 cells increases from 2 mM, with 140 mM Na+ in the medium, up to 30 mM, if the replacement of Na+ for choline is complete. Similar results are obtained for CHO cells. The membrane potential increase under the influence of valinomycin leads to the increase in the value of Vmax of the uptake. The data obtained are interpreted on the basis of the well known scheme of Na+ alanine complex transfer, where Na+ increases the affinity of the carrier to the amino acid, and the membrane potential increases the carrier mobility.  相似文献   

11.
Synaptic vesicles contain a H+-ATPase that generates a proton electrochemical gradient (delta mu H+) required for the uptake of neurotransmitters into the organelles. In this study, the synaptic vesicle H+-ATPase was examined for structural and functional similarities with other identified ATPases that generate a delta mu H+ across membranes. The synaptic vesicle H+-ATPase displayed immunological similarity with the 115-, 72-, and 39-kDa subunits of a vacuolar-type H+-ATPase purified from chromaffin granules. Functionally, the ATP-dependent H+ pumping across synaptic vesicles and ATP hydrolysis were sensitive to the sulfhydryl-modifying reagents, N-ethylmaleimide and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole, at concentrations known to affect vacuolar-type H+-ATPases. In addition, as with vacuolar-type H+-ATPases, the presence of NO3-, SO4(2-), or F- inhibited the generation of a delta mu H+, but addition of vanadate or oligomycin had no effect. The delta mu H+ is a function of the pH gradient (delta pH) and membrane potential (delta psi sv) across the synaptic vesicle. Acidification (delta pH) of the synaptic vesicle interior was enhanced in the presence of permeant anions, such as Cl-, or the K+ ionophore, valinomycin. In the absence of permeant anions, the H+-ATPase generated a delta psi sv that effected the transport of L-glutamate into the synaptic vesicles. Dissipation of delta psi sv by incubation with increased external Cl- or nigericin resulted in the abolition of glutamate uptake, despite the continued maintenance of a delta mu H+ across the synaptic vesicle as a substantial delta pH. The results suggest that the synaptic vesicle H+-ATPase is of a vacuolar type and energizes the uptake of anionic glutamate by virtue of the delta psi sv component of the delta mu H+ it generates.  相似文献   

12.
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.  相似文献   

13.
This investigation was principally undertaken to test the ionic gradient hypothesis as applied to active p-aminohippurate uptake in the rabbit kidney cortical slice preparation. Efflux of p-aminohippurate from the slice was shown to be independent of external Na+ concentration. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing p-aminohippurate increased intracellular concentrations of both Na+ and K+, and p-aminohippurate accumulation occurred. Transferring slices from a low sodium preincubation to a high sodium incubation medium containing ouabain and p-aminohippurate resulted in a net increase in intracellular Na+ concentration but no p-aminohippurate accumulation occurred. Different combinations of preincubation and incubation media gave a high to low array of intracellular Na+ concentrations and these directly reflected their respective p-aminohippurate uptake. These results suggest that the Na+ gradient hypothesis does not adequately explain the transport of organic acids in rabbit kidney. These results also suggest that Na+ possibly has an intracellular role through its stimulation of (Na+ + K+)-ATPase channeled to energizing the p-aminohippurate accumulative mechanism.  相似文献   

14.
This paper reports an investigation on the relationship between the proton electrochemical gradient (delta mu H+) and the cyclosporin A-sensitive permeability transition pore (PTP) in rat liver mitochondria. Using the SH group cross-linker phenylarsine oxide as the inducer, we show that both matrix pH and the membrane potential can modulate the process of PTP induction independently of Ca2+. We find that membrane depolarization induces the PTP per se when pHi is above 7.0, while at acidic matrix pH values PTP induction is effectively prevented. Since Ca2+ uptake leads to major modifications of the delta mu H+ (i.e. matrix alkalinization and membrane depolarization), we have explored the possibility that the Ca(2+)-induced changes of the delta mu H+ may contribute to PTP induction by Ca2+. Our data in mitochondria treated with Ca2+ plus N-ethylmaleimide and Ca2+ plus phosphate show that membrane depolarization is a powerful inducer of the PTP. Taken together, our observations indicate that the PTP can be controlled directly by the delta mu H+ both in the absence and presence of Ca2+, and suggest that a collapse of the membrane potential may be the cause rather than the consequence of PTP induction under many experimental conditions. Thus, many inducers may converge on dissipation of the membrane potential component of the delta mu H+ by a variety of mechanisms.  相似文献   

15.
Proton translocation, coupled to electron transfer in the fumarate reductase system, generates and electrochemical potential gradient for protons (delta approximately mu H+). The magnitude of this free energy gradient has been determined in the Escherichia coli strains ML 208-225 and AN 283. The measurements were performed in (inverted) membrane particles, right-side out membrane vesicles and EDTA-treated intact cells in external media of various ionic compositions and pH. The maximal values of delta approximately mu H+ in these three systems were +103, -101 and -105 mV, respectively. This implicates that in E. coli, upon transition from oxygen to fumarate as electron acceptor, the magnitude of the delta approximately mu H+ decreases considerably. This change of delta approximately mu H+ has substantial consequences for the cellular metabolism.  相似文献   

16.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

17.
The contributions of the transmembrane pH gradient (delta pH) and electrical potential (delta phi) to the delta mu H(+)-driven Na+ efflux (mediated by the N,N'-dicyclohexylcarbodiimide-sensitive Na+/H(+)-antiporter) were investigated in membrane vesicles of Halobacterium halobium. Kinetic analysis in the dark revealed that two different Na(+)-binding sites are located asymmetrically across the membrane: One, accessible from the external medium, has a Kd (half-maximal stimulation of Na+ efflux) of about less than 50 mM, and the Na+ binding to the site is a prerequisite for the antiporter activation by delta mu H+. The other cytoplasmic site is the Na+ transport site. The Km for the cytoplasmic Na+ decreased as the delta pH increased, while the Vmax remained essentially constant in the presence of defined delta phi (140 mV). On the other hand, delta phi elevation above the gating potential (approximately 100 mV) increased the Vmax without changes in the Km in the presence of a fixed delta pH. It was also noted that the Km value in the absence of delta phi was completely different from and far higher than that observed in the presence of delta phi (greater than 100 mV), indicating the existence of two distinct conformations in the antiporter, resting and delta phi gated; the latter state may be reactive only to delta pH. On the basis of the present data and the previous data on the pH effect (N. Murakami and T. Konishi, 1989 Arch. Biochem. Biophys. 271, 515-523), a model for the delta pH-delta phi regulation of the antiporter activation is proposed.  相似文献   

18.
Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  相似文献   

19.
Cells of Vibrio costicola at pH 8.5 generate both membrane potential (inside negative) and delta pH (inside acidic) in the presence of a proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). The generation of CCCP-resistant membrane potential was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide that is known to inhibit the Na+-motive NADH oxidase of Vibrio alginolyticus. NADH oxidase, but not lactate oxidase, of inverted membrane vesicles prepared from V. costicola required Na+ for a maximum activity and was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. By the oxidation of NADH, inverted membrane vesicles generated concentration gradients of Na+ across the membrane, whose magnitude was always larger than that of delta pH by about 50 mV. In contrast, magnitudes of delta pH and Na+ concentration gradients generated by the oxidation of lactate were similar. Na+ translocation in the presence of lactate was inhibited by CCCP but little affected by valinomycin. On the other hand, Na+ translocation in the presence of NADH was resistant to CCCP and stimulated by valinomycin. Amiloride, an inhibitor for a eucaryotic Na+/H+ antiport system, inhibited the lactate-dependent Na+ translocation but had little effect on the NADH-dependent Na+ translocation. These results indicate that a primary event of lactate oxidation is the translocation of H+, which then causes the generation of Na+ concentration gradients via the secondary Na+/H+ antiport system. We conclude that the NADH oxidase of V. costicola translocates Na+ as an immediate result of respiration, leading to the generation of Na+ electrochemical potential.  相似文献   

20.
Z Tynecka  Z Szcze?niak 《Microbios》1991,67(274):53-63
The effect of Cd2+ on phosphate (Pi) uptake was investigated in the growing cells of Cd(2+)-resistant Staphylococcus aureus 1781OR and Cd(2+)-sensitive S. aureus 17810S. Inhibitor and ionophore studies showed that 32Pi uptake in the two strains occurred via the Pi porter down pH gradient (delta pH) generated by the respiratory chain. Cd2+ inhibited 32Pi uptake in the cadmium-sensitive strain 1781OS at all concentrations used (10 microM-1 mM). In strain 1781OR, possessing the plasmid-coded Cd2+ efflux system, 10-100 microM Cd2+ did not inhibit 32Pi uptake. Even at 1 mM Cd2+, inhibition of 32Pi uptake in strain 1781OR was reversed when the external Cd2+ was chelated with cysteine and activity of Cd2+ efflux system was restored. Cd2+ efflux induced by cysteine was energized either by membrane potential (delta psi) or by delta pH, which indicated that electrochemical gradient of protons (delta mu H+) was required for this efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号