首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrated previously that 5-lipoxygenase (5-LO), a key enzyme in leukotriene biosynthesis, can be phosphorylated by p38 MAPK-regulated MAPKAP kinases (MKs). Here we show that mutation of Ser-271 to Ala in 5-LO abolished MK2 catalyzed phosphorylation and clearly reduced phosphorylation by kinases prepared from stimulated polymorphonuclear leukocytes and Mono Mac 6 cells. Compared with heat shock protein 27 (Hsp-27), 5-LO was a weak substrate for MK2. However, the addition of unsaturated fatty acids (i.e. arachidonate 1-50 microm) up-regulated phosphorylation of 5-LO, but not of Hsp-27, by active MK2 in vitro, resulting in a similar phosphorylation as for Hsp-27. 5-LO was phosphorylated also by other serine/threonine kinases recognizing the motif Arg-Xaa-Xaa-Ser (protein kinase A, Ca(2+)/calmodulin-dependent kinase II), but these activities were not increased by fatty acids. HeLa cells expressing wild type 5-LO or S271A-5-LO, showed prominent 5-LO activity when incubated with Ca(2+)-ionophore plus arachidonate. However, when stimulated with only exogenous arachidonic acid, activity for the S271A mutant was significantly lower as compared with wild type 5-LO. It appears that phosphorylation at Ser-271 is more important for 5-LO activity induced by a stimulus that does not prominently increase intracellular Ca(2+) and that arachidonic acid stimulates leukotriene biosynthesis also by promoting this MK2-catalyzed phosphorylation.  相似文献   

2.
Human 5-lipoxygenase contains an essential iron   总被引:5,自引:0,他引:5  
The iron content of human 5-lipoxygenase has been determined by a colorimetric assay using the chromogenic ligand FerroZine. The highly active enzyme was obtained from a baculovirus expression system and purified using an ATP-agarose chromatography column (Denis, D., Falgueyret, J.-P., Riendeau, D., and Abramovitz, M. (1991) J. Biol. Chem. 266, 5072-5079). A linear correlation was observed between the enzyme's specific activity and iron content in six different preparations. Enzyme with the highest specific activity (24 mumol of 5-hydroperoxyeicosatetraenoic acid/mg of protein) contained 1.1 mol of iron/mol of enzyme, whereas inactive enzyme contained no detectable iron. The iron is tightly bound to the enzyme and could only be released after inactivation of the enzyme by exposure to oxygen.  相似文献   

3.
Leukotrienes (LTs) are lipid messengers generated by leukocytes that drive inflammation and modulate neighboring cell function. The synthesis of LTs from arachidonic acid is initiated by the enzyme 5-lipoxygenase (5-LO). We report for the first time that LT synthesis is inhibited by the direct action of protein kinase A (PKA) on 5-LO. The catalytic subunit of PKA directly phosphorylated 5-LO in vivo and in vitro and inhibited activity in intact cells and in vitro. Mutation of Ser-523 on human 5-LO prevented phosphorylation by PKA and restored LT synthesis. Treatment with PKA activators inhibited LTB(4) synthesis in 3T3 cells expressing wild type 5-LO but not in cells expressing the S523A mutant of 5-LO. The mechanism of inhibition of LTB(4) synthesis did not involve either reduced membrane association of activated 5-LO or redistribution of 5-LO from the nucleus to the cytoplasm. Instead, PKA phosphorylation of recombinant 5-LO inhibited in vitro activity, as did co-transfection of cells with 5-LO plus the catalytic subunit of PKA. Also, substitution of Ser-523 with glutamic acid, mimicking phosphorylation, resulted in the total loss of 5-LO activity. These results indicate that PKA phosphorylates 5-LO on Ser-523, which inhibits the catalytic activity of 5-LO and reduces cellular LT generation. Thus, PKA activation, as can occur in response to adenosine, prostaglandin E(2), beta-adrenergic agonists, and other mediators, is a means of directly reducing 5-LO activity and LT synthesis that may be important in limiting inflammation and maintaining homeostasis.  相似文献   

4.
Tn5 was used to generate mutants that were deficient in the dissimilatory reduction of nitrite for Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. Three types of mutants were isolated. The first type showed a lack of growth on nitrate, nitrite, and nitrous oxide. The second type grew on nitrate and nitrous oxide but not on nitrite (Nir-). The two mutants of this type accumulated nitrite, showed no nitrite reductase activity, and had no detectable nitrite reductase protein bands in a Western blot (immunoblot). Tn5 insertions in these two mutants were clustered in the same region and were within the structural gene for nitrite reductase. The third type of mutant grew on nitrate but not on nitrite or nitrous oxide (N2O). The mutant of this type accumulated significant amounts of nitrite, NO, and N2O during anaerobic growth on nitrate and showed a slower growth rate than the wild type. Diethyldithiocarbamic acid, which inhibited nitrite reductase activity in the wild type, did not affect NO reductase activity, indicating that nitrite reductase did not participate in NO reduction. NO reductase activity in Nir- mutants was lower than that in the wild type when the strains were grown on nitrate but was the same as that in the wild type when the strains were grown on nitrous oxide. These results suggest that the reduction of NO and N2O was carried out by two distinct processes and that mutations affecting nitrite reduction resulted in reduced NO reductase activity following anaerobic growth with nitrate.  相似文献   

5.
Numerous candidates have been suggested according to chemical and structural criteria for the active site base of ribulose bisphosphate carboxylase/oxygenase that catalyzes substrate enolization. We evaluate the functional significance of two such candidates, His-321 and Ser-368 of the Rhodospirillum rubrum enzyme, by site-directed mutagenesis. Position 321 mutants retain 3-12% of wild-type rates of both overall carboxylation and the initial enolization, with little effect on Km for CO2 or ribulose bisphosphate. Position 368 mutants exhibit approximately 1% of wild-type carboxylation but 4-9% of enolization, also accompanied by little effect on Km values. The modest catalytic facilitations elicited by these residues are incompatible with either acting as the crucial base. The enhanced efficiency of the position 368 mutants in enolization versus carboxylation clearly indicates that Ser-368 effects catalysis preferentially beyond the point of proton abstraction. Both sets of mutants bind the reaction intermediate analogue, 2-carboxy-D-arabinitol bisphosphate, stoichiometrically. Ligand exchange from complexes with position 321 mutants is increased relative to wild type, whereas complexes with position 368 mutants are more exchange-inert. Therefore, His-321 may assist stabilization of the transition state mimicked by the analogue.  相似文献   

6.

Background

Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction.

Methodology/Principal Findings

After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells.

Conclusions/Significance

Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.  相似文献   

7.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

8.
Foster J  Kim HU  Nakata PA  Browse J 《The Plant cell》2012,24(3):1217-1229
Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA synthetase (EC 6.2.1.8) catalyzes the first step, but no gene encoding this function has been found. Here, we identify acyl-activating enzyme3 (AAE3; At3g48990) from Arabidopsis as a gene encoding oxalyl-CoA synthetase. Recombinant AAE3 protein has high activity against oxalate, with K(m) = 149.0 ± 12.7 μM and V(max) = 11.4 ± 1.0 μmol/min/mg protein, but no detectable activity against other organic acids tested. Allelic aae3 mutants lacked oxalyl-CoA synthetase activity and were unable to degrade oxalate into CO(2). Seeds of mutants accumulated oxalate to levels threefold higher than the wild type, resulting in the formation of oxalate crystals. Crystal formation was associated with seed coat defects and substantially reduced germination of mutant seeds. Leaves of mutants were damaged by exogenous oxalate and more susceptible than the wild type to infection by the fungus Sclerotinia sclerotiorum, which produces oxalate as a phytotoxin to aid infection. Our results demonstrate that, in Arabidopsis, oxalyl-CoA synthetase encoded by AAE3 is required for oxalate degradation, for normal seed development, and for defense against an oxalate-producing fungal pathogen.  相似文献   

9.
In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized. Although Pro degradation was undetectable in p5cdh mutants, neither increased Pro levels nor an altered growth phenotype were observed under normal conditions. Thus AtP5CDH is essential for Pro degradation but not required for vegetative plant growth. External Pro application caused programmed cell death, with callose deposition, reactive oxygen species production, and DNA laddering, involving a salicylic acid signal transduction pathway. p5cdh mutants were hypersensitive toward Pro and other molecules producing P5C, such as Arg and Orn. Pro levels were the same in the wild type and mutants, but P5C was detectable only in p5cdh mutants, indicating that P5C accumulation may be the cause for Pro hypersensitivity. Accordingly, overexpression of AtP5CDH resulted in decreased sensitivity to externally supplied Pro. Thus, Pro and P5C/Glu semialdehyde may serve as a link between stress responses and cell death.  相似文献   

10.
We have analyzed wild type mouse hepatoma (Hepa 1c1c7) cells and variant cells which are defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. One type of variant has no detectable basal or inducible aryl hydrocarbon hydroxylase activity. This class contains apparently normal cytosolic receptors for 2,3,7,8-tetrachlorodibenzo-p-dioxin, but is unable to translocate the inducer-receptor complex to the nucleus. The second type of variant has low levels of basal and inducible aryl hydrocarbon hydroxylase activity. This class contains cytosolic receptors which are decreased either in their number or in their ability to bind 2,3,7,8-tetrachlorodibenzo-p-dioxin; translocation of the inducer-receptor complex to the nucleus is apparently normal. Cell fusions indicate that both variant phenotypes are recessive with respect to wild type. Complementation analyses indicate that the defects are located on different genes.  相似文献   

11.
Formate dehydrogenase of Clostridium pasteurianum   总被引:4,自引:3,他引:1       下载免费PDF全文
Formate dehydrogenase was purified to electrophoretic homogeneity from N2-fixing cells of Clostridium pasteurianum W5. The purified enzyme has a minimal Mr of 117,000 with two nonidentical subunits with molecular weights of 76,000 and 34,000, respectively. It contains 2 mol of molybdenum, 24 mol of nonheme iron, and 28 mol of acid-labile sulfide per mol of enzyme; no other metal ions were detected. Analysis of its iron-sulfur centers by ligand exchange techniques showed that 20 iron atoms of formate dehydrogenase can be extruded as Fe4S4 centers. Fluorescence analysis of its isolated molybdenum centers suggests it is a molybdopterin. The clostridial formate dehydrogenase has a pH optimum between 8.3 and 8.5 and a temperature optimum of 52 degrees C. The Km for formate is 1.72 mM with a Vmax of 551 mumol of methyl viologen reduced per min per mg of protein. Sodium azide competes competitively with formate (K1 = 3.57 microM), whereas the inactivation by cyanide follows pseudo-first-order kinetics with K = 5 X 10(2) M-1 s-1.  相似文献   

12.
The nuclear import of proteins typically requires the presence of a nuclear localization sequence (NLS). Some proteins have more than one NLS, but the significance of having multiple NLSs is unclear. The enzyme 5-lipoxygenase (5-LO) has three NLSs that, unlike the tight cluster of basic residues of the classical SV40 large T antigen NLS, contain dispersed basic residues. When attached to green fluorescent protein (GFP), individual 5-LO NLSs caused quantitatively and statistically less import than the SV40 NLS. Combined 5-LO NLSs produced nuclear import that was comparable to that of the SV40 NLS. As expected, GFP/NLS proteins displayed relatively uniform import in all cells. However, a fusion protein of GFP plus the 5-LO protein, modified to contain only one functional NLS, produced some cells with import and some cells without import. A GFP/5-LO fusion protein containing two functional NLSs produced four identifiable levels of nuclear import. Quantitative and visual analysis of a population of cells expressing the intact GFP/5-LO protein, with three intact NLSs, indicated five levels of nuclear import. This suggested that the subcellular distribution of 5-LO may vary widely in normal cells of the body. Consistent with this, immunohistochemical staining of lung sections found that individual macrophages, in situ, displayed cell-specific levels of import of 5-LO. Since nuclear accumulation is known to affect 5-LO activity, multiple NLSs may allow graded regulation of activity via controlled import. Multiple NLSs on other proteins may likewise allow fine control of protein action through modulation of the level of import.  相似文献   

13.
Huang YC  Colman RF 《Biochemistry》2002,41(17):5637-5643
Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of isocitrate, and maintains the normal conformation of the enzyme.  相似文献   

14.
15.
5-Lipoxygenase: regulation of expression and enzyme activity   总被引:8,自引:0,他引:8  
5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes, a group of pro-inflammatory lipid mediators derived from arachidonic acid. Leukotriene antagonists are used in the treatment of asthma, and the potential role of leukotrienes in atherosclerosis, another chronic inflammatory disease, has recently received considerable attention. In addition, some possible effects of 5-LO metabolites in tumorigenesis have emerged. Thus, knowledge of the biochemistry of this enzyme has potential implications for the treatment of various diseases. Recent advances have expanded our understanding of the regulatory mechanisms underlying the expression and control of 5-LO activity. With regard to the control of enzyme activity, many of these findings focus on the N-terminal domain of 5-LO.  相似文献   

16.
Human NADH-cytochrome b5 reductase (EC 1.6.2.2) contains 4 cyteine residues (Cys-203, -273, -283, and -297). Cys-283 was previously proposed to be involved in NADH binding by chemical modification (Hackett, C. S., Novoa, W. B., Ozols, J., and Strittmatter, P. (1986) J. Biol. Chem. 261, 9854-9857). In the present study the role of cysteines in the enzyme was probed by replacing these residues by Ser, Ala, or Gly employing site-directed mutagenesis and chemical modification. Four mutants, in which 1 of the 4 Cys residues was replaced by Ser, retained comparable kcat and Km values to those of the wild type. All of these mutants were as sensitive as the wild type to treatment with SH modifiers, while a double mutant, C273S/C283S was resistant. Since inhibition by SH modifiers was protected by NADH, Cys-273 and Cys-283 were implicated to be close to the NADH-binding site. C273A and C273A/C283A mutants showed approximately one-fifth of the enzyme-FAD reduction rate of the wild type as revealed by steady-state kinetics and by stopped-flow analysis. Anaerobic titration has shown that reduction and re-oxidation processes including formation of the red semiquinone of these mutants were not significantly altered from those of the wild type. From these results it was concluded that none of the Cys residues of the enzyme are essential in the catalytic reaction, but Cys-273 conserved among the enzymes homologous to NADH-cytochrome b5 reductase homologous to NADH-cytochrome b5 reductase plays role(s) in facilitating the reaction. A difference spectrum with a peak at 317 nm, which was formerly considered to be derived from the interaction between NAD+ and Cys-283 of the reduced enzyme, appeared upon binding of NAD+ not only to the reduced wild type enzyme but also to the C273A/C283A mutant in which both of the Cys residues close to the NADH-binding site were replaced.  相似文献   

17.
Activity of peroxidase, superoxide dismutase and catalase were examined in leaves, stems and roots of olivacea ( oli ) and monstrosa ( mon ) mutants of Lycopersicon esculentum Mill. The extent of the difference between the pattern of oxidative enzyme activities of the wild type (wt) and the mutants was determined. The high peroxidase activity during the developmental stages of the leaves and stems of oli and mon phenotypes is associated with high levels of 4 anodic peroxidases in leaves and of two isozymes in the stem. Leaves of oli exhibit higher activity of the cathodic peroxidase C2, while both mutations have a marked increase of peroxidase C1 in stems. A positive relation between high peroxidase activity and oxidative stress damage was found: in chilling experiments at 5°C, peroxidase level in mutants and wt leaves was negatively correlated with electrolyte leakage. Superoxide dismutase (SOD) activity rises in oli stems around flowering time due to the high activity of the chloroplast forms SOD-1 and SOD-2. Catalases (CAT) were detectable only in early stages of plant development; CAT-2 was nearly absent in wild type tissues but well represented in mon and oli. The oli and mon mutations may affect critical steps of a regulatory pathway controlling various classes of oxidative enzymes in tomato.  相似文献   

18.
Jeong JJ  Fushinobu S  Ito S  Jeon BS  Shoun H  Wakagi T 《FEBS letters》2003,535(1-3):200-204
The gene encoding phosphoglucose isomerase was cloned from Thermococcus litoralis, and functionally expressed in Escherichia coli. The purified enzyme, a homodimer of 21.5 kDa subunits, was biochemically characterized. The inhibition constants for four competitive inhibitors were determined. The enzyme contained 1.25 mol Fe and 0.24 mol Zn per dimer. The activity was enhanced by the addition of Fe(2+), but inhibited by Zn(2+) and EDTA. Enzymes with mutations in conserved histidine and glutamate residues in their cupin motifs contained no metals, and showed large decreases in k(cat). The circular dichroism spectra of the mutant enzymes and the wild type enzyme were essentially the same but with slight differences.  相似文献   

19.
Coenzyme QH2-cytochrome c reductase is a multisubunit complex of the mitochondrial respiratory chain. Mutants of Saccharomyces cerevisiae with lesions in cytochromes b, c1, the non-heme iron protein, and the noncatalytic subunits have been used to study several aspects of the assembly of the complex. Strains with mutations in single subunits exhibit a variety of different phenotypes. Mutants in the 17-kDa (core 3) subunit grow normally on a nonfermentable substrate indicating that this component is not essential for either enzymatic activity or assembly of the enzyme. Mutations in all the other subunits express a respiratory-deficient phenotype and the absence of detectable enzyme activity. Among the respiratory-defective strains, some have mature cytochrome b (non-heme iron protein and cytochrome c1 mutants), while other mutants lack spectrally detectable cytochrome b and have reduced levels of the apoprotein (mutants in the 44-, 40-, 14-, and 11-kDa core subunits). Mutations in single subunits exert different effects on the concentrations of their partner proteins. These may be summarized as follows: 1) No substantial loss in the 44- or 40-kDa core subunits is seen in single mutants; 2) the concentration of cytochrome c1 is also relatively unaffected by mutations in the other subunits except for the cytochrome b mutant which has 60% of the wild type level of cytochrome c1; 3) all the single mutants have only 15-20% of the normal amount of non-heme iron protein; 4) mutations in the non-heme iron protein have no appreciable effect on the concentrations of the other subunits; 5) mutations in single subunits cause parallel decreases in the concentrations of cytochrome b, the 14-, and the 11-kDa subunits. These results indicate that the synthesis or stability of a subset of subunits depends on the presence of other subunit polypeptides of the complex. At present we favor the idea that the observed changes in the concentrations of some subunits are due to higher turnover rates of the proteins in a partially assembled complex. Based on the mutant phenotypes, a tentative model for the assembly of coenzyme QH2-cytochrome c reductase is proposed. According to this model it is envisioned that the subunits interact with one another in the lipid bilayer. Maturation of apocytochrome b occurs after it is assembled with the nonstructural subunits to form a core structure. This intermediate complex interacts with the non-heme iron protein to form the active holoenzyme.  相似文献   

20.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号