首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on kinetic arguments, we have recently proposed the existence of two distinct Na+/D-glucose cotransporters in brush-border membrane vesicles isolated from the human fetal jejunum (Biochim. Biophys. Acta 938 (1988) 181-188). In order to further test this hypothesis, inhibition studies of the zero-trans influx of substrate have been performed under Na(+)-gradient and voltage-clamped conditions. Initial rates of D-glucose uptake were totally abolished by D-glucose, D-galactose, alpha-methylglucose and phlorizin while 3-O-methylglucose and phloretin induced only a 65% inhibition even at the highest concentrations used. The residual activity of D-glucose uptake is thus compatible with substrate flux through a low-affinity transport system which is insensitive to phloretin and does not accept 3-O-methylglucose as substrate. This substrate specificity has been used to separate kinetically the two putative pathways for glucose transport. The data obtained are compatible with the existence of the following two systems: (i) a low-affinity, high-capacity system with a Km of 4.7 mM and a Vmax of 22 nmol/min per mg of protein, and; (ii) a high-affinity, low-capacity system with a Km of 0.57 mM and a Vmax of 10.7 nmol/min per mg of protein. These data thus demonstrate clearly the existence of two distinct Na(+)-dependent D-glucose carriers in the human jejunum during the early gestation period since these systems can be differentiated not only by their kinetic properties but also by their differences in both substrate and inhibitor specificities.  相似文献   

2.
Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.   总被引:1,自引:0,他引:1  
Active transport of glucose in prosthecae isolated from cells of Asticcacaulis biprosthecum was stimulated by the non-physiological electron donor N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride. Glucose uptake was mediated by two transport systems; the apparent Km of the high-affinity system was 1.8 muM and that of the low-affinity system was 34 muM. Free glucose accumulated within prosthecae at a concentration 60 to 200 times above that present externally, depending on the Km of the system being observed. The glucose transport system in prosthecae was stereospecific for D-glucose, and neither methyl alpha-D-glucopyranoside nor 2-deoxyglucose was transported. Uptake of glucose was inhibited by N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB), and the inhibition by PCMB but not by NEM was reversed by dithiothreitol. Glucose uptake was also inhibited by the uncoupling agents 5-chloro-3-t-butyl-2'-nitrosalicylanilide (S-13), 5-chloro-3-(p-chlorophenyl)-4'-chlorosalicylanilide (S-6), and carbonyl-cyanide m-chlorophenylhydrazone (CCCP) and by the respiratory inhibitor KCN. Efflux of glucose from preloaded prosthecae was induced by PCMB and KCN, but not by S-13 or CCCP. Glucose uptake was not affected by arsenate or an inhibitor of membrane-bound adenosine triphosphatases, N, N'-dicyclohexylcarbodiimide. The lack of inhibition by these two compounds, combined with the extremely low levels of adenosine 5'-triphosphate present in prosthecae, indicates that adenosine 5'-triphosphate is not involved in the transport of glucose by prosthecae.  相似文献   

3.
Listeria monocytogenes transported glucose by a high-affinity phosphoenolpyruvate-dependent phosphotransferase system and a low-affinity proton motive force-mediated system. The low-affinity system (Km = 2.9 mM) was inhibited by 2-deoxyglucose and 6-deoxyglucose, whereas the high-affinity system (Km = 0.11 mM) was inhibited by 2-deoxyglucose and mannose but not 6-deoxyglucose. Cells and vesicles artificially energized with valinomycin transported glucose or 2-deoxyglucose at rates greater than those of de-energized cells, indicating that a membrane potential could drive uptake by the low-affinity system.  相似文献   

4.
Transport of the nonmetabolizable glucose analogue, 3-O-methylglucose, was assessed in human polymorphonuclear leucocytes with or without the chemotactic peptide N-formylmethionylleucylphenylalanine (fMet-Leu-Phe). The peptide increased entry of labelled 3-O-methylglucose about 5-fold and the intracellular distribution space about 70%. The half-time of equilibration was 3 s in the treated cells. Similar effects were observed with zymosan-treated serum (containing the chemotactic factor C5a), with arachidonic acid, calcium ionophore A23187 and phorbol myristate acetate. However, the chemotactic protein, thrombin, had no effect, even though binding to high-affinity receptors was demonstrated. Km for zero-trans entry of 3-O-methylglucose was about 1 mM and fMet-Leu-Phe increased Vmax from 5 to about 25 amol.s-1.cell-1. Similar values were obtained from incubations for a few seconds with glucose and 2-deoxyglucose. The rate of 2-deoxyglucose uptake (8 min incubations) was limited by the transport step at substrate concentrations lower than approx. 0.1 mM, whereas the phosphorylation step became rate-limiting at higher concentrations. Thus, 2-deoxyglucose uptake can only be taken as a measure of transport at a tracer concentration. It is concluded that chemotactic factors can, but do not necessarily, increase the maximal transport velocity of hexoses entering the polymorphonuclear leucocyte via the glucose transporter.  相似文献   

5.
Studies have been carried out in the presence of 2-deoxyglucose, by utilizing a technique of platelet rapid filtration. Kinetic data suggest that glucose uptake across plasma membrane is the rate limiting step in its utilization. 2-deoxyglucose is transported by facilitated diffusion. L-glucose is transferred at only 1/1200 of the rate of glucose. Transport system shows high affinity for substrate. Transport is inhibited by cytochalasin B, phloretin and N-ethylmaleimide. Cytochalasin E does not affect 2-deoxyglucose uptake. Diamide can have activating or inhibitory effect. t-Butyl hydroperoxide is always activating. Insulin has no effect on rate transport. D-glucose, 3-O-methylglucose, non radioactive 2-deoxyglucose and D-mannose are strong competitors, whereas D-galactose and D-fructose compete weakly with 2-deoxyglucose transport.  相似文献   

6.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

7.
The suitability of [3H]-2-deoxyglucose from measuring initial rates of glucose uptake in isolated rat adipocytes was assessed using three approaches. Basal and insulin-stimulated rates of glucose uptake were directly compared in 2 sec and 5 min assays using [14C]-3-O-methylglucose, [3H]-2-deoxyglucose, and [3H]-D-glucose. Equilibrium kinetics of 2-deoxyglucose uptake were compared with those of 3-O-methylglucose through impairment of hexokinase activity by depleting cellular energy with 2,4-dinitrophenol. The equivalence of these glucose analogues in a dynamic system was assessed by measuring the lag time preceding insulin stimulation of glucose uptake, insulin activation rates, and the T 1/2 of insulin activation. Our results demonstrate that no fundamental difference exists in the initial transport of 3-O-methylglucose, 2-deoxyglucose, and D-glucose.  相似文献   

8.
Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence.  相似文献   

9.
The activity and Km of glucose transport of rat adipocytes are quite variable in the basal state. This could be due to differing levels of highly saturable transport against a background of less saturable transport. Such heterogeneity could lead to differing conclusions as to the Km of basal cells compared to insulin-stimulated cells depending on the choice of substrate, the range of concentrations tested, and the rigor of data analysis. In the present work, we used a cell preparation which was stable and partially activated by constant agitation. We used a two-component model to fit the concentration dependence of D-glucose uptake. We defined two parallel pathways of glucose entry, a high-affinity/low-capacity pathway and a low-affinity/high-capacity pathway. Both pathways were stereospecific and were inhibited by cytochalasin B. The low-affinity pathway in basal cells had 97% of the total capacity (Vmax) with a high Km (greater than 50 mM). A second pathway had a very low Km (less than 1 mM) and only 3% of the total capacity, but contributed to 30-60% of glucose uptake at 8 mM glucose. In insulin-stimulated cells, a pathway with a Km of 4-5 mM dominated and contributed 85% of glucose transport. The low-affinity but not the very high affinity pathway persisted in stimulated cells, but its contribution was only 10-15% of transport at 8 mM glucose. These results suggest the presence of at least two functionally distinct transporters whose respective contributions can be characterized by nonlinear regression of data over a wide range of glucose concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have previously shown in primary cultured rat adipocytes that insulin acts at receptor and multiple postreceptor sites to decrease insulin's subsequent ability to stimulate glucose transport. To examine whether D-glucose can regulate glucose transport activity and whether it has a role in insulin-induced insulin resistance, we cultured cells for 24 h in the absence and presence of various glucose and insulin concentrations. After washing cells and allowing the glucose transport system to deactivate, we measured basal and maximally insulin-stimulated 2-deoxyglucose uptake rates (37 degrees C) and cell surface insulin binding (16 degrees C). Alone, incubation with D-glucose had no effect on basal or maximal glucose transport activity, and incubation with insulin, in the absence of glucose, decreased maximal (but not basal) glucose transport rates only 18% at the highest preincubation concentration (50 ng/ml). However, in combination, D-glucose (1-20 mM) markedly enhanced the long-term ability of insulin (1-50 ng/ml) to decrease glucose transport rates in a dose-responsive manner. For example, at 50 ng/ml preincubation insulin concentration, the maximal glucose transport rate fell from 18 to 63%, and the basal uptake rate fell by 89%, as the preincubation D-glucose level was increased from 0 to 20 mM. Moreover, D-glucose more effectively promoted decreases in basal glucose uptake (Ki = 2.2 +/- 0.4 mM) compared with maximal transport rates (Ki = 4.1 +/- 0.4 mM) at all preincubation insulin concentrations (1-50 ng/ml). Similar results were obtained when initial rates of 3-O-methylglucose uptake were used to measure glucose transport. D-glucose, in contrast, did not influence insulin-induced receptor loss. In other studies, D-mannose and D-glucosamine could substitute for D-glucose to promote the insulin-induced changes in glucose transport, but other substrates such as L-glucose, L-arabinase, D-fructose, pyruvate, and maltose were without effect. Also, non-metabolized substrates which competitively inhibit D-glucose uptake (3-O-methylglucose, cytochalasin B) blocked the D-glucose plus insulin effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. pH-dependence of glycolysis has generally been ascribed to the effects of pH on the activities of glycolytic enzymes. The present study shows that sugar transport is pH-dependent in cultured Ehrlich ascites-tumour cells. 2. The rates of glucose consumption, of 3-O-methylglucose transport, and of 2-deoxyglucose transport and phosphorylation increased as linear functions of pH, as the pH of the cell culture medium was increased from 6.1 to 8.5. Transport of glucose, as measured in ATP-depleted cells, was pH-dependent to the same extent as transport of the non-metabolizable sugars. 3. Glucose consumption rates were about 8-fold higher at pH 8.5 than at pH 6.4. About 65-85% of glucose was converted into lactate. Sugar transport rates were 2.5-fold higher at pH 8.5 than at pH 6.3. 4. pH affected both simple diffusion and facilitated diffusion. pH effect was mainly on the Vmax. of 2-deoxyglucose uptake, and on the rapid-uptake phase of 3-O-methylglucose transport. 5. It was estimated that about 70% of the pH effect on the rates of glucose consumption may be due to the effect on sugar transport and the remainder to the effect on the activities of glycolytic enzymes.  相似文献   

12.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 microM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

13.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

14.
Transformation of chicken embryo fibroblasts with Rous sarcoma virus results in cells with an enhanced rate of hexose uptake. We have examined transport of the glucose analogs 2-deoxyglucose and 3-O-methylglucose in cells infected with a temperature sensitive variant of the virus. In cells shifted from restrictive to permissive conditions for transformation, increased transport of the non-phosphorylatable analog 3-O-methylglucose occurs at the same time as that of 2-deoxyglucose, a phosphorylatable analog. This enhanced rate of transport can be observed within three hours of the temperature shift. There is a corresponding decrease in the transport rate of both analogs following shift to the restrictive temperature. These results suggest that increased transport is likely to be the primary event in causing transformation-specific changes in sugar metabolism. We have also examined uptake into the internal pools of both the phosphorylated and non-phosphorylated forms of 2-deoxyglucose in normal cells and in cells transformed by the wild-type virus. These data indicate a corresponding increase in the rate of accumulation of the free sugar in transformed cells and point to transport as the rate limiting step in the accumulation of 2-deoxyglucose in both normal and transformed chicken embryo cells.  相似文献   

15.
In Escherichia coli wild-type cells and in ATPase-deficient cells (unc mutants), glucose was found to be transported mainly by an ATP-driven system. The evidence is based on experiments involving interference at different sites of energy metabolism with the use of uncouplers, arsenate, and starved cells. Furthermore, addition of succinate to starved cells increased glucose uptake only in the wild-type cells, where ATP could be regenerated. Glucose transport was also ATP-dependent in cells deficient in methyl-beta-galactoside transport (a system that carries glucose specificity). It was found to be shock-sensitive in all strains tested. The NOVEL ATP-driven glucose transport is a high-affinity (Km 3-10 microM) and high-capacity (V 240-330 Mmol . min-1 . mg cell protein-1) uptake system.  相似文献   

16.
Fructose transport in Neurospora crassa.   总被引:1,自引:0,他引:1       下载免费PDF全文
A specific fructose uptake system (Km = 0.4 mM) appeared in Neurospora crassa when glucose-grown mycelia were starved. Fructose uptake had kinetics different from those of intramycelial fructose phosphorylation, and uptake appeared to be carrier mediated. The only sugar which competitively inhibited fructose uptake was L-sorbose (Ki = 9 mM). Glucose, 2-deoxyglucose, mannose, and 3-O-methyl glucose were noncompetitive inhibitors of fructose uptake. Incubation of glucose-grown mycelia with glucose, 2-deoxyglucose, or mannose prevented derepression of the fructose transport system, whereas incubation with 3-O-methyl glucose caused the appearance of five times as much fructose uptake activity as did starvation conditions.  相似文献   

17.
The kinetic parameters for transport of the nonmetabolizable glucose analogue 3-O-methyl-D-glucose and the relationship between transport and metabolism of D-glucose and D-fructose were determined in isolated rat hepatocytes at 37 degrees C and pH 7.4. 3-O-Methylglucose at a very low concentration (0.1 mM) equilibrated with the intracellular water with a rate constant of 0.41 s-1. Km for equilibrium exchange entry was 5.5 mM and Vmax was 2.2 mM X s-1 and similar results were obtained when using the zero-trans entry protocol. The rate constant for entry of tracer D-glucose was 0.15 s-1 and Km for glucose was about 20 mM. The phosphorylation rate for D-glucose was much slower than the transport rate. The rate constant for D-fructose entry was about 0.04 s-1, the apparent Km was about 100 mM and Vmax about 5 mM X s-1. The concentration dependence of 3-O-methylglucose inhibition of labelled fructose transport revealed biphasic kinetics indicating that fructose was transferred by both the glucose transporter and a fructose transporter. At concentrations lower than 1 mM, fructose metabolism appeared to be limited by the transport step.  相似文献   

18.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

19.
20.
The inhibition of D-glucose transport into brain by several hexose analogues has been investigated in adult anaesthetized rats. D-Glucose was transported with apparent Vmax. = 1.22 mumol/g per min, Km = 11.12 mM and Kd = 0.008 ml/g per min. 6-Chloro-6-deoxyglucose was transported with corresponding values of Vmax. = 1.33 mumol/g per min, Km = 5.5 mM and Kd = 0.0155 ml/g per min and inhibited D-glucose transport with apparent Ki = 3.01 mM. 6-Chloro-6-deoxymannose, 6-chloro-6-deoxygalactose and 6-tosyl-6-deoxygalactose also inhibited D-glucose transport, but 6-chloro-6-deoxyfructose was without effect. The results were consistent with a model for glucose transport at the blood/brain interface that involves a hydrophobic site on the transport protein at or near the 6-position of bound glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号