首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa bacteriophage endolysins KZ144 (phage phiKZ) and EL188 (phage EL) are highly lytic peptidoglycan hydrolases (210 000 and 390 000 units mg(-1)), active on a broad range of outer membrane-permeabilized Gram-negative species. Site-directed mutagenesis indicates E115 (KZ144) and E155 (EL188) as their respective essential catalytic residues. Remarkably, both endolysins have a modular structure consisting of an N-terminal substrate-binding domain and a predicted C-terminal catalytic module, a property previously only demonstrated in endolysins originating from phages infecting Gram-positives and only in an inverse arrangement. Both binding domains contain conserved repeat sequences, consistent with those of some peptidoglycan hydrolases of Gram-positive bacteria. Fusions of these domains with green fluorescent protein immediately label all outer membrane-permeabilized Gram-negative bacteria tested, isolated P. aeruginosa peptidoglycan and N-acetylated Bacillus subtilis peptidoglycan, demonstrating the broad range of peptidoglycan-binding capacity by these domains. Specifically, A1 chemotype peptidoglycan and fully N-acetylated glucosamine units are essential for binding. Both KZ144 and EL188 appear to be a natural chimeric enzyme, originating from a recombination of a cell wall-binding domain encoded by a Bacillus or Clostridium species and a catalytic domain of an unknown ancestor.  相似文献   

2.
Aims: To select and evaluate an appropriate outer membrane (OM) permeabilizer to use in combination with the highly muralytic bacteriophage endolysin EL188 to inactivate (multi‐resistant) Pseudomonas aeruginosa. Methods and Results: We tested the combination of endolysin EL188 and several OM permeabilizing compounds on three selected Ps. aeruginosa strains with varying antibiotic resistance. We analysed OM permeabilization using the hydrophobic probe N‐phenylnaphtylamine and a recombinant fusion protein of a peptidoglycan binding domain and green fluorescent protein on the one hand and cell lysis assays on the other hand. Antibacterial assays showed that incubation of 106Ps. aeruginosa cells ml?1 in presence of 10 mmol l?1 ethylene diamine tetraacetic acid disodium salt dihydrate (EDTA) and 50 μg ml?1 endolysin EL188 led to a strain‐dependent inactivation between 3·01 ± 0·17 and 4·27 ± 0·11 log units in 30 min. Increasing the EL188 concentration to 250 μg ml?1 further increased the inactivation of the most antibiotic resistant strain Br667 (4·07 ± 0·09 log units). Conclusions: Ethylene diamine tetraacetic acid disodium salt dihydrate was selected as the most suitable component to combine with EL188 in order to reduce Ps. aeruginosa with up to 4 log units in a time interval of 30 min. Significance and Impact of the Study: This in vitro study demonstrates that the application range of bacteriophage encoded endolysins as ‘enzybiotics’ must not be limited to gram‐positive pathogens.  相似文献   

3.
High hydrostatic pressure is a new technology in the food processing industry, and is used for cold pasteurization of food products. However, the pressure inactivation of food-borne microorganisms requires very high pressures (generally more than 400 MPa) and long pressure holding times (5 min or more). Carrying out pressure processing at low temperatures without freezing can reduce these parameters, which presently limit the application of this technology, in keeping the quality of fresh raw product. The yeast, Saccharomyces cerevisiae and the bacterium, Lactobacillus plantarum were pressurized for 10 min at temperatures between -20 and 25 degrees C and pressure between 100 and 350 MPa. Pressurization at subzero temperatures without freezing significantly enhanced the effect of pressure. For example, at a pressure of 150 MPa, the decrease in temperature from ambient to -20 degrees C allowed an increase in the pressure-induced inactivation from less than 1 log up to 7-8 log for each microorganism studied. However, for comparable inactivation levels, the kinetics of microorganism inactivation did not differ, which suggests identical inactivation mechanisms. Implications of water thermodynamical properties like compression, protein denaturation, as well as membrane phase transitions, are discussed.  相似文献   

4.
The relationship between membrane permeability, changes in ultrastructure, and inactivation in Escherichia coli strain K-12TG1 cells subjected to high hydrostatic pressure treatment at room and subzero temperatures was studied. Propidium iodide staining performed before and after pressure treatment made it possible to distinguish between reversible and irreversible pressure-mediated cell membrane permeabilization. Changes in cell ultrastructure were studied using transmission electron microscopy (TEM), which showed noticeable condensation of nucleoids and aggregation of cytosolic proteins in cells fixed after decompression. A novel technique used to mix fixation reagents with the cell suspension in situ under high hydrostatic pressure (HHP) and subzero-temperature conditions made it possible to show the partial reversibility of pressure-induced nucleoid condensation. However, based on visual examination of TEM micrographs, protein aggregation did not seem to be reversible. Reversible cell membrane permeabilization was noticeable, particularly for HHP treatments at subzero temperature. A correlation between membrane permeabilization and cell inactivation was established, suggesting different mechanisms at room and subzero temperatures. We propose that the inactivation of E. coli cells under combined HHP and subzero temperature occurs mainly during their transiently permeabilized state, whereas HHP inactivation at room temperature is related to a balance of transient and permanent permeabilization. The correlation between TEM results and cell inactivation was not absolute. Further work is required to elucidate the effects of pressure-induced damage on nucleoids and proteins during cell inactivation.  相似文献   

5.
超高压处理对副溶血性弧菌的影响研究   总被引:2,自引:0,他引:2  
杭瑜瑜  陆海霞  励建荣 《微生物学报》2009,49(11):1489-1493
摘要:【目的】探讨超高压致死微生物的机理。【方法】本文以副溶血性弧菌为对象,研究了超高压处理对副溶血性弧菌的灭菌效果、对副溶血性弧菌细胞超微结构、细胞无机盐离子含量以及细胞膜蛋白的影响。【结果】结果表明,在20℃下分别经100、200 MPa高压处理10min后,副溶血性弧菌致死率为40%、84.7%,经300 MPa及以上的压力处理,副溶血性弧菌的致死率为100%。超高压处理对细菌细胞形态结构造成明显的损伤:局部细胞壁遭到破坏,出现缺口;胞质内含物结构紊乱,出现泄漏,细胞中部出现透电子区;细胞结构不完整  相似文献   

6.
The relationship between membrane permeability, changes in ultrastructure, and inactivation in Escherichia coli strain K-12TG1 cells subjected to high hydrostatic pressure treatment at room and subzero temperatures was studied. Propidium iodide staining performed before and after pressure treatment made it possible to distinguish between reversible and irreversible pressure-mediated cell membrane permeabilization. Changes in cell ultrastructure were studied using transmission electron microscopy (TEM), which showed noticeable condensation of nucleoids and aggregation of cytosolic proteins in cells fixed after decompression. A novel technique used to mix fixation reagents with the cell suspension in situ under high hydrostatic pressure (HHP) and subzero-temperature conditions made it possible to show the partial reversibility of pressure-induced nucleoid condensation. However, based on visual examination of TEM micrographs, protein aggregation did not seem to be reversible. Reversible cell membrane permeabilization was noticeable, particularly for HHP treatments at subzero temperature. A correlation between membrane permeabilization and cell inactivation was established, suggesting different mechanisms at room and subzero temperatures. We propose that the inactivation of E. coli cells under combined HHP and subzero temperature occurs mainly during their transiently permeabilized state, whereas HHP inactivation at room temperature is related to a balance of transient and permanent permeabilization. The correlation between TEM results and cell inactivation was not absolute. Further work is required to elucidate the effects of pressure-induced damage on nucleoids and proteins during cell inactivation.  相似文献   

7.
In order to study the pressure-induced changes of biological membrane, hydrostatic pressures of from 0.1 to 400 MPa were applied to membrane-bound Na(+)/K(+)-ATPase from pig kidney as a model system of protein and lipid membrane. The activity showed at least a three-step change induced by pressures of 0.1-100 MPa, 100-220 MPa, and 220 MPa or higher. At pressures of 100 MPa or lower a decrease in the fluidity of lipid bilayer and a reversible conformational change in transmembrane protein is induced, leading to the functional disorder of membrane-associated ATPase activity. A pressure of 100-220 MPa causes a reversible phase transition in parts of the lipid bilayer from the liquid crystalline to the gel phase and the dissociation of and/or conformational changes in the protein subunits. These changes could cause a separation of the interface between alpha and beta subunits and between protein and the lipid bilayer to create transmembrane tunnels at the interface. Tunnels would be filled with water from the aqueous environment and take up tritiated water. A pressure of 220 MPa or higher irreversibly destroys and fragments the gross membrane structure, due to protein unfolding and interface separation, which is amplified by the increased pressure. These findings provide an explanation for the high pressure-induced membrane-damage to subcellular organelles.  相似文献   

8.
The structural damage to and leakage of internal substances from Saccharomyces cerevisiae 0–39 cells induced by hydrostatic pressure were investigated. By scanning electron microscopy, yeast cells treated at room temperature with pressuresbellw 400 MPa for 10 min showed a slight alteration in outer shape. Transmission electron microscopy, however, showed that the inner structure of the cell began to be affected, especially the nuclear membrane, when treated with hydrostatic pressure around 100 MPa at room temperature for 10 min; at more than 400–600 MPa, further alterations appeared in the mitochondria and cytoplasm. Furthermore, when high pressure treatment was carried out at — 20° C, the inner structure of the cells was severely damaged even at 200 MPa, and almost all of the nuclear membrane disappeared, although the fluorescent nucleus in the cytoplasm was visible by 4,6-diamidino-2-phenylindole (DAPI) staining. The structural damage of pressure-treated cells was accompanied by the leakage of internal substances. The efflux of UV-absorbing substances including amino acid pools, peptides, and metal ions increased with increase in pressure up to 600 MPa. In particular, amounts of individual metal ion release varied with the magnitude of hydrostatic pressures over 300 MPa, which suggests that the ions can be removed from the yeast cells separately by hydrostatic pressure treatment. Correspondence to: S. Shimada  相似文献   

9.
10.
We have studied the inactivation of six gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, Salmonella enterica serovar Typhimurium, Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic pressure treatment in the presence of hen egg-white lysozyme, partially or completely denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or coliphage T4 lysozyme. None of these compounds had a bactericidal or bacteriostatic effect on any of the tested bacteria at atmospheric pressure. Under high pressure, all bacteria except both Salmonella species showed higher inactivation in the presence of 100 microg of lysozyme/ml than without this additive, indicating that pressure sensitized the bacteria to lysozyme. This extra inactivation by lysozyme was accompanied by the formation of spheroplasts. Complete knockout of the muramidase enzymatic activity of lysozyme by heat treatment fully eliminated its bactericidal effect under pressure, but partially denatured lysozyme was still active against some bacteria. Contrary to some recent reports, these results indicate that enzymatic activity is indispensable for the antimicrobial activity of lysozyme. However, partial heat denaturation extended the activity spectrum of lysozyme under pressure to serovar Typhimurium, suggesting enhanced uptake of partially denatured lysozyme through the serovar Typhimurium outer membrane. All test bacteria were sensitized by high pressure to a peptide corresponding to amino acid residues 96 to 116 of hen egg white, and all except E. coli and P. fluorescens were sensitized by high pressure to a peptide corresponding to amino acid residues 143 to 155 of T4 lysozyme. Since they are not enzymatically active, these peptides probably have a different mechanism of action than all lysozyme polypeptides.  相似文献   

11.
Abstract The influence of elevated hydrostatic pressure on the growth rates of two hyperthermophilic Archaea isolated from hydrothermal vent environments (strains ES1 and ES4) was investigated over their entire temperature range for growth. Thermococcus celer , a shallow marine hyperthermophile was included in the study for comparative purposes. For one strain (ES4), the pressure at the site of collection (22 MPa) caused an upward shift in the optimal growth temperature of about 6°C compared to growth at 1 MPa. Although the optimal temperature for ES1 was unaffected by 22 MPa, elevated pressure stimulated the growth rate at supra-optimal temperatures. The temperature range for growth for both organisms was extended upward 2°C at 22 MPa pressure. For both strains 22 MPa had little effect on growth rates at sub-optimal temperatures. Growth was observed at pressures as high as 89 MPa for ES1 and 67 MPa for ES4, but with these higher pressures the temperature range for growth was narrowed, and the optimal temperature was shifted downward. Growth of Thermococcus celer was slightly stimulated by 22 MPa at its reported optimal temperature of 88°C, but was inhibited by higher pressure.  相似文献   

12.
Iwahashi H  Odani M  Ishidou E  Kitagawa E 《FEBS letters》2005,579(13):2847-2852
Genome-wide mRNA expression profiles of Saccharomyces cerevisiae growing under hydrostatic pressure were characterized. We selected a hydrostatic pressure of 30 MPa at 25 degrees C because yeast cells were able to grow under these conditions, while cell size and complexity were increased after decompression. Functional characterization of pressure-induced genes suggests that genes involved in protein metabolism and membrane metabolism were induced. The response to 30 MPa was significantly different from that observed under lethal conditions because protein degradation was not activated under 30 MPa pressure. Strongly induced genes those that contribute to membrane metabolism and which are also induced by detergents, oils, and membrane stabilizers.  相似文献   

13.
We investigated the properties of membrane lipids of barotolerant Pseudomonas sp. BT1 by differential scanning calorimetry and spectrophotometry using a system equipped with a hydrostatic pressure controller. In the case of cells grown under high pressure, an endothermic peak appeared under high-pressure measurement conditions. However, in the case of cells grown at 0.1 MPa, such a peak was not observed. It was also observed on spectrophotometry that the membrane lipids from cells grown at 30 MPa had stable properties in comparison with those grown at 0.1 MPa various hydrostatic pressures and temperatures.  相似文献   

14.
High hydrostatic pressure induced cold inactivation of carboxypeptidase Y. Carboxypeptidase Y was fully active when exposed to subzero temperature at 0.1 MPa; however, the enzyme became inactive when high hydrostatic pressure and subzero temperature were both applied. When the enzyme was treated at pressures higher than 300 MPa and temperatures lower than -5 degrees C, it underwent an irreversible inactivation in which nearly 50% of the alpha-helical structure was lost as judged by circular dichroism spectral analysis. When the applied pressure was limited to below 200 MPa, the cold inactivation process appeared to be reversible. In the presence of reducing agent, this reversible phenomenon, observed at below 200 MPa, diminished to give an inactive enzyme; the agent reduces some of disulfide bridge(s) in an area of the structure that is newly exposed area because of the cold inactivation. Such an area is unavailable if carboxypeptidase Y is in its native conformation. Because all the disulfide bridges in carboxypeptidase Y locate near the active site cleft, it is suggested that the structural destruction, if any, occurs preferentially in this disulfide rich area. A possible mechanism of pressure-dependent cold inactivation of CPY is to destroy the alpha-helix rich region, which creates an hydrophobic environment. This destruction is probably a result of the reallocation of water molecules. Experiments carried out in the presence of denaturing agents (SDS, urea, GdnHCl), salts, glycerol, and sucrose led to a conclusion consistent with the idea of water reallocation.  相似文献   

15.
The relationship between membrane damage and loss of viability following pressure treatment was examined in Escherichia coli strains C9490, H1071, and NCTC 8003. These strains showed high, medium, and low resistance to pressure, respectively, in stationary phase but similar resistance to pressure in exponential phase. Loss of membrane integrity was measured as loss of osmotic responsiveness or as increased uptake of the fluorescent dye propidium iodide. In exponential-phase cells, loss of viability was correlated with a permanent loss of membrane integrity in all strains, whereas in stationary-phase cells, a more complicated picture emerged in which cell membranes became leaky during pressure treatment but resealed to a greater or lesser extent following decompression. Strain H1071 displayed a very unusual pressure response in stationary phase in which survival decreased to a minimum at 300 MPa but then increased at 400 to 500 MPa before decreasing again. Membranes were unable to reseal after treatment at 300 MPa but could do so after treatment at higher pressures. Membrane damage in this strain was thus typical of exponential-phase cells under low-pressure conditions but of stationary-phase cells under higher-pressure conditions. Heat shock treatment of strain H1071 cells increased pressure resistance under low-pressure conditions and also allowed membrane damage to reseal. Growth in the presence of IPTG (isopropyl-beta-D-thiogalactopyranoside) increased resistance under high-pressure conditions. The mechanisms of inactivation may thus differ at high and low pressures. These studies support the view that membrane damage is an important event in the inactivation of bacteria by high pressure, but the nature of membrane damage and its relation to cell death may differ between species and phases of growth.  相似文献   

16.
J L Silva  P Luan  M Glaser  E W Voss    G Weber 《Journal of virology》1992,66(4):2111-2117
A new approach to the preparation of antiviral vaccines relying on the inactivation of the virus particle by hydrostatic pressure is described. The enveloped virus vesicular stomatitis virus was utilized as a model; a pressure of 260 MPa applied for 12 h reduced infectivity by a factor of 10(4), and the antibodies against pressurized material were as effective as those against the intact virus when measured by their neutralization titer. Fluorescence measurements indicate that application of pressure results in perturbations of the particle interactions that permit binding of specific molecular probes. Electron microscopy showed that the membrane of the pressurized virus was partially preserved, presenting the spike pattern of the membrane G protein. Unlike the icosahedral viruses, dissociation into smaller particles was not observed, but a constant change in the morphology was the presence of a bulge in the surface of the pressurized virus, indicating a displacement of the capsid subunits, retained under the lipid and protein membrane.  相似文献   

17.
Mycobacterium abscessus is an important hospital-acquired pathogen involved in infections associated with medical, surgical, and biopharmaceutical materials. In this work, we investigated the pressure-induced inactivation of two strains [2544 and American Type Culture Collection (ATCC) 19977] of M. abscessus in combination with different temperatures and pH conditions. For strain 2544, exposure to 250 MPa for 90 min did not significantly inactivate the bacteria at 20 °C, whereas at ?15 °C, there was complete inactivation. Exposure to 250 MPa at ≥60 °C caused rapid inactivation, with no viable bacteria after 45 min. With 45 min of exposure, there were no viable bacteria at any temperature when a higher pressure (350 MPa) was used. Extremes of pH (4 or 9) also markedly enhanced the pressure-induced inactivation of bacteria at 250 MPa, with complete inactivation after 45 min. In comparison, exposure of this strain to the disinfecting agent glutaraldehyde (0.5 %) resulted in total inactivation within 5 min. Strain 19977 was more sensitive to high pressure but less sensitive to glutaraldehyde than strain 2544. These results indicate that high hydrostatic pressure in combination with other physical parameters may be useful in reducing the mycobacterial contamination of medical materials and pharmaceuticals that are sensitive to autoclaving.  相似文献   

18.
The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids.  相似文献   

19.
The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (DeltapH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane DeltapH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.  相似文献   

20.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号