首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
M Bott  D Ritz    H Hennecke 《Journal of bacteriology》1991,173(21):6766-6772
Mitochondrial cytochrome c is a water-soluble protein in the intermembrane space which catalyzes electron transfer from the cytochrome bc1 complex to the terminal oxidase cytochrome aa3. In Bradyrhizobium japonicum, a gene (cycM) which apparently encodes a membrane-anchored homolog of mitochondrial cytochrome c was discovered. The apoprotein deduced from the nucleotide sequence of the cycM gene consists of 184 amino acids with a calculated Mr of 19,098 and an isoelectric point of 8.35. At the N-terminal end (positions 9 to 31), there was a strongly hydrophobic domain which, by forming a transmembrane helix, could serve first as a transport signal and then as a membrane anchor. The rest of the protein was hydrophilic and, starting at position 72, shared about 50% sequence identity with mitochondrial cytochrome c. The heme-binding-site motif Cys-Gly-Ala-Cys-His was located at positions 84 to 88. A B. japonicum cycM insertion mutant (COX122) exhibited an oxidase-negative phenotype and apparently lacked cytochrome aa3 in addition to the CycM protein. The wild-type phenotype with respect to all characteristics tested was restored by providing the cycM gene in trans. The data supported the conclusion that the assembly of cytochrome aa3 depended on the prior incorporation of the CycM protein in the cytoplasmic membrane.  相似文献   

3.
A new protein of Salmonella typhimurium was identified and characterized. The gene (tlpA) encoding this protein (TlpA) was isolated from the large virulence-associated plasmid of S. typhimurium and sequenced in order to predict the primary structure of TlpA. tlpA encodes a 371-amino acid soluble protein with a calculated M(r) of 41600 and pI of 4.63. Secondary structure predictions and sequence statistics of TlpA indicated a predominant alpha-helical configuration and presence of heptapeptide repeat motifs characteristic of coiled coil proteins. Purified TlpA was shown to have biochemical properties similar to those of coiled coil proteins, including adoption of an alpha-helical configuration and a tendency to form homodimers. Furthermore, TlpA possessed heat resistance, evidence for a chain register and altered mobility in urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels which are characteristics of tropomyosins. TlpA shows 32% overall sequence similarity with rat cardiac myosin and 36% similarity with horse platelet beta-tropomyosin over 226 residues, whereas selected regions possessed significant sequence identities with myosins, tropomyosins, and alpha-helical surface proteins of Streptococcus pyogenes. Our results indicate that TlpA represents a new member of prokaryotic coiled coil proteins.  相似文献   

4.
5.
A mutant of Paracoccus denitrificans which is deficient in c-type cytochromes grows aerobically with generation times similar to those obtained with a wild-type strain. The aa3-type oxidase is functional in the mutant as judged by spectrophotometric assays of cytochrome c oxidation using the membrane particles and cytochrome aa3 reduction in whole cells. The cytochrome c oxidase (aa3-type) of the c-less mutant oxidizes soluble cytochrome c at rates equivalent to those obtained with the wild-type. NADH and succinate oxidase activities of the membrane preparations of the mutant and wild-type are also comparable in the absence of detergent treatment. Exogenous soluble cytochrome c can be both reduced by NADH- and succinate-linked systems and oxidized by cytochrome aa3 present in membranes of the mutant strain. Rapid overall electron transport can occur in the c-less mutant, suggesting that reactions result from collision of diffusing complexes.  相似文献   

6.
The cytochrome o terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 to ubiquinone-8 within the cytoplasmic membrane and the concomitant reduction of O2 to H2O. The hydropathy profiles of the deduced amino acid sequences suggest that all five of the gene products of the cyo operon contain multiple membrane-spanning helical segments. The goal of this work was to obtain experimental evidence for the topology of the five gene products in the cytoplasmic membrane by using the technique of gene fusions. A number of random gene fusions were generated in vitro encoding hybrid proteins in which the amino-terminal portion was provided by the subunit of interest and the carboxyl-terminal portion by one of two sensor proteins, alkaline phosphatase lacking its signal sequence or beta-galactosidase. Results obtained are self-consistent, and topological models are proposed for all of the five gene products encoded by the cyo operon. Based on the sequence similarities with subunits of the aa3-type cytochrome c oxidases, the experimental evidence obtained here can be used to infer topological models for the mitochondrial encoded subunits of the eukaryotic cytochrome c oxidases.  相似文献   

7.
TlpA is an unusual thioredoxin-like protein present in the nitrogen-fixing soil bacterium Bradyrhizobium japonicum. A hydrophobic N-terminal transmembrane domain anchors it to the cytoplasmic membrane, whereby the hydrophilic thioredoxin domain becomes exposed to the periplasmic space. There, TlpA catalyses an essential reaction, probably a reduction, in the biogenesis of cytochrome aa(3). The soluble thioredoxin domain (TlpA(sol)), devoid of the membrane anchor, was purified and crystallized. Oxidized TlpA(sol) crystallized as a non-covalent dimer in the space group P2(1)2(1)2(1). The X-ray structure analysis was carried out by isomorphous replacement using a xenon derivative. This resulted in a high-resolution (1.6 A) three-dimensional structure that displayed all of the features of a classical thioredoxin fold. A number of peculiar structural details were uncovered: (i) Only one of the two active-site-cysteine sulphurs (Cys72, the one closer to the N terminus) is exposed on the surface, making it the likely nucleophile for the reduction of target proteins. (ii) TlpA(sol) possesses a unique structural disulphide bond, formed between Cys10 and Cys155, which connects an unprecedented N-terminal alpha helix with a beta sheet near the C terminus. (iii) An insertion of about 25 amino acid residues, not found in the thioredoxin prototype of Escherichia coli, contributes only marginally to the thioredoxin fold, but forms an extra, surface-exposed alpha helix. This region plus another surface-exposed stretch (-Ile-Gly-Arg-Ala-), which is absent even in the closest TlpA relatives, might be considered as specificity determinants for the recognition of target proteins in the periplasm. The TlpA(sol) structure paves the way towards unraveling important structure-function relationships by rational mutagenesis.  相似文献   

8.
TlpA is a temperature-sensing, coiled-coil protein, encoded on the pSLT virulence plasmid of Salmonella enterica serovar Typhimurium. TlpA was previously presumed to play a role in the pathogenicity of Salmonella. Herein we show that TlpA is tightly regulated, differentially expressed in response to environmental and physiological signals, and can be secreted in vitro. Expression of tlpA was found to be repressed in modified minimal medium containing limiting concentrations of Mg2+ and in the stationary phase of growth, but induced in rich LB broth and in response to elevated temperatures. The response regulator PhoP was found to play a key role in the repression of tlpA in conjunction with two other regulators, RpoS and TlpA itself. In addition, we demonstrate that TlpA is dispensable for intracellular proliferation of S. Typhimurium within host cells and for virulence in mice. Based on presented homology of TlpA to the IncP plasmid encoded protein, KfrA, and to SMC family members, a potential function for TlpA is discussed. Cumulatively, our data do not support the previous hypothesis that TlpA plays a role in the pathogenicity of Salmonella per se, but may suggest an alternative function for TlpA unrelated to host infection.  相似文献   

9.
Cloning and sequencing of the Paracoccus denitrificans ccmG gene indicates that it codes for a periplasmic protein–disulphide oxidoreductase; the presence of the sequence Cys-Pro-Pro-Cys at the CcmG active site suggests that it may act in vivo to reduce disulphide bonds rather than to form them. A CcmG–PhoA fusion confirmed the periplasmic location. Disruption of the ccmG gene resulted in not only the expected phenotype of pleiotropic deficiency in c -type cytochromes, but also loss of spectroscopically detectable cytochrome aa 3, cytochrome c oxidase and ascorbate/TMPD oxidase activities; there was also an enhanced sensitivity to growth inhibition by some component of rich media and by oxidized thiol compounds. Dithiothreitol promoted the growth of the ccmG mutant on rich media and substantially restored spectroscopically detectable cytochrome aa 3 and cytochrome c oxidase activity, although it did not restore c -type cytochrome biogenesis. Assembly of the disulphide-bridged proteins methanol dehydrogenase and Escherichia coli alkaline phosphatase was unaffected in the ccmG mutant. It is proposed that P. denitrificans CcmG acts in vivo to reduce protein–disulphide bonds in certain protein substrates including c -type cytochrome polypeptides and/or polypeptides involved in c -type cytochrome biogenesis.  相似文献   

10.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

12.
13.
Further genetic evidence is provided here that Bradyrhizobium japonicum possesses a mitochondria-like electron-transport pathway: 2[H]----UQ----bc1----c----aa3----O2. Two Tn5-induced mutants, COX122 and COX132, having cytochrome c oxidase-negative phenotypes, were obtained and characterized. Mutant COX122 was defective in a novel gene, named cycM, which was responsible for the synthesis of a c-type cytochrome with an Mr of 20,000 (20K). This 20K cytochrome c appeared to catalyse electron transport from the cytochrome bc1 complex to the aa3-type terminal oxidase and, unlike mitochondrial cytochrome c, was membrane-bound in B. japonicum. The Tn5 insertion of mutant COX132 was localized in coxA, the structural gene for subunit I of cytochrome aa3. This finding also led to the cloning and sequencing of the corresponding wild-type coxA gene that encoded a 541-amino-acid protein with a predicted Mr of 59,247. The CoxA protein shared about 60% sequence identity with the cytochrome aa3 subunit I of mitochondria. The B. japonicum cycM and coxA mutants were able to fix nitrogen in symbiosis with soybean (Fix+). In contrast, mutants described previously which lacked the bc1 complex did not develop into endosymbiotic bacteroids and were thus Fix-. The data suggest that a symbiosis-specific respiratory chain exists in B. japonicum in which the electrons branch off at the bc1 complex.  相似文献   

14.
In this work, the genes for cytochrome aa3 oxidase and the cytochrome bc1 complex in the gram-positive soil bacterium Corynebacterium glutamicum were identified. The monocistronic ctaD gene encoded a 65-kDa protein with all features typical for subunit I of cytochrome aa3 oxidases. A ctaD deletion mutant lacked the characteristic 600 nm peak in redox difference spectra, and growth in glucose minimal medium was strongly impaired. The genes encoding subunit III of cytochrome aa3 (ctaE) and the three characteristic subunits of the cytochrome bc1 complex (qcrABC) were clustered in the order ctaE-qcrCAB. Analysis of the deduced primary structures revealed a number of unusual features: (1) cytochrome c1 (QcrC, 30 kDa) contained two Cys-X-X-Cys-His motifs for covalent heme attachment, indicating that it is a diheme c-type cytochrome; (2) the 'Rieske' iron-sulphur protein (QcrA, 45 kDa) contained three putative transmembrane helices in the N-terminal region rather than only one; and (3) cytochrome b (QcrB, 60 kDa) contained, in addition to the conserved part with eight transmembrane helices, a C-terminal extension of about 120 amino acids, which presumably is located in the cytoplasm. Staining of C. glutamicum proteins for covalently bound heme indicated the presence of a single, membrane-bound c-type cytochrome with an apparent molecular mass of about 31 kDa. Since this protein was missing in a qcrCAB deletion mutant, it most likely corresponds to cytochrome c1. Similar to the deltactaD mutant, the deltaqcrCAB mutant showed strongly impaired growth in glucose minimal medium, which indicates that the bc1-aa3 pathway is the main route of respiration under these conditions.  相似文献   

15.
The gram-positive endospore-forming bacterium Bacillus subtilis has, under aerobic conditions, a branched respiratory system comprising one quinol oxidase branch and one cytochrome oxidase branch. The system terminates in one of four alternative terminal oxidases. Cytochrome caa(3) is a cytochrome c oxidase, whereas cytochrome bd and cytochrome aa(3) are quinol oxidases. A fourth terminal oxidase, YthAB, is a putative quinol oxidase predicted from DNA sequence analysis. None of the terminal oxidases are, by themselves, essential for growth. However, one quinol oxidase (cytochrome aa(3) or cytochrome bd) is required for aerobic growth of B. subtilis strain 168. Data indicating that cytochrome aa(3) is the major oxidase used by exponentially growing cells in minimal and rich medium are presented. We show that one of the two heme-copper oxidases, cytochrome caa(3) or cytochrome aa(3), is required for efficient sporulation of B. subtilis strain 168 and that deletion of YthAB in a strain lacking cytochrome aa(3) makes the strain sporulation deficient.  相似文献   

16.
A gene in Paracoccus for subunit III of cytochrome oxidase   总被引:5,自引:0,他引:5  
M Saraste  M Raitio  T Jalli  A Per?maa 《FEBS letters》1986,206(1):154-156
The region of Paracoccus denitrificans chromosome where the genes coding for cytochrome oxidase (cytochrome aa3) subunits are located has been cloned. DNA sequencing revealed an open reading frame that codes for a protein homologous to the subunit III of the eukaryotic, mitochondrial enzyme. This subunit is absent from the isolated Paracoccus oxidase. It now seems that it is part of the native enzyme in the bacterial cytoplasmic membrane. This may explain the observed discrepancies in the function of the isolated enzyme.  相似文献   

17.
A cytochrome in an extremely halophilic archaeon, Haloferax volcanii, was purified to homogeneity. This protein displayed a redox difference spectrum that is characteristic of a-type cytochromes and a CN(-) complex spectrum that indicates the presence of heme a and heme a(3). This cytochrome aa(3) consisted of 44- and 35-kDa subunits. The amino acid sequence of the 44-kDa subunit was similar to that of the heme-copper oxidase subunit I, and critical amino acid residues for metal binding, such as histidines, were highly conserved. The reduced cytochrome c partially purified from the bacterial membrane fraction was oxidized by the cytochrome aa(3), providing physiological evidence for electron transfer from cytochrome c to cytochrome aa(3) in archaea.  相似文献   

18.
A novel bo3-type quinol oxidase was highly purified from Bacillus cereus PYM1, a spontaneous mutant unable to synthesize heme A and therefore spectroscopically detectable cytochromes aa3 and caa3. The purified enzyme contained 12.4 nmol of heme O and 11.5 nmol of heme B mg-1 protein. The enzyme was composed of two subunits with an Mr of 51,000 and 30,000, respectively. Both subunits were immunoreactive to antibodies raised against the B cereus aa3 oxidase. Moreover, amino-terminal sequence analysis of the 30-kDa subunit revealed that the first 19 residues were identical to those from the 30-kDa subunit of the B. cereus aa3 oxidase. The purified bo3 oxidase failed to oxidize ferrrocytochrome c (neither yeast nor horse) but oxidized tetrachlorohydroquinol with an apparent Km of 498 microM, a Vmax of 21 micromol of O2 min-1mg-1, and a calculated turnover of 55 s-1. The quinol oxidase activity with tetrachlorohydroquinol was inhibited by potassium cyanide and 2-n-heptyl 4-hydroxyquinoline-N-oxide with an I50 of 24 and 300 microM, respectively. Our results demonstrate that the bo3 oxidase of this mutant is not the product of a new operon but instead is a cytochrome aa3 apoprotein encoded by the qox operon of the aa3 oxidase of B. cereus wild type promiscuously assembled with hemes B and O replacing heme A, producing a novel bo3 cytochrome. This is the first reported example of an enzymatically active promiscuous oxidase resulting from the simultaneous substitution of its original hemes in the high and low spin sites.  相似文献   

19.
Terminal oxidases provide the final step in aerobic respiration by reducing oxygen. The mycobacteria possess two terminal oxidases: a cytochrome c aa3 type and a quinol bd type. We previously isolated a bd-type oxidase knockout mutant of Mycobacterium smegmatis that allowed for functional analysis of the aa3 type without the contribution of bd-type activity. Growth of M. smegmatis LR222 and JAM1 (LR222bd::kan) was monitored and the cytochrome content at different time points examined. No difference in aerobic growth was observed between M. smegmatis LR222 and JAM1. Membranes were obtained from these cultures and the oxidase concentrations were calculated from their spectrum. Although the mutant was producing only one oxidase type, this oxidase did not reach wild-type levels of expression, suggesting an additional mechanism for energizing the membrane. Moreover, the concentration of both oxidases in the wild-type strain dropped when cultures entered stationary phase, which was not the case for the aa3-type oxidase of the mutant strain. This oxidase remained at a constant concentration post mid-log phase. RNase protection assays also demonstrated late growth phase dependent message expression of the bd oxidase and that the subunits I and II genes were cotranscribed as an operon.  相似文献   

20.
Since it was shown in previous work that NCA3 (one of the four genes of the SUN family) is involved in mitochondrial protein synthesis regulation, the effect of the other members of this gene family was tested. UTH1 (but not SUN4 or SIM1) was also shown to interfere with mitochondria biogenesis. In Deltauth1 cells, cytochromes aa(3), c, and b were lowered by 25 and 15%, respectively. In the double-null mutant Deltauth1Deltanca3, only cytochrome aa(3) was lowered by 50% relative to the wild type. However, the ratio of cellular respiration to cytochrome oxidase was greatly enhanced in the double-null mutant. Measurements on whole lysed cells showed that another mitochondrial enzyme, citrate synthase, was also lowered in Deltauth1 and Deltauth1Deltanca3 whereas hexokinase was not. Electron micrographs showed no difference in global mitochondria content in Deltauth1Deltanca3, but mitochondria appeared less dense to electrons compared to the wild type. Cardiolipin and mtDNA were equivalent in parental and mutant strains. Measurements on isolated mitochondria showed that the cyt aa(3)/cyt b ratio was also lowered in Deltauth1Deltanca3, but the control exerted by the oxidase on the respiratory flux was higher. The activity of other mitochondrial complexes versus oxidase was equivalent in mutants compared to the wild type. These results suggest that the protein equipment could be lowered in mitochondria from strains inactivated for UTH1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号