首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of 137Cs migration in forest ecosystem is presented, which describes the behaviour of this radionuclide in the forest litter-soil system, trees, understory and forest animals. The model's parameters for different types of forest ecosystems are estimated and model's adequacy is tested through the use of independent experimental data. The sensitivity of the model's output variables is analyzed to variations in the most significant parameters. The differences in the seasonal and mean annual dynamics of 137Cs concentration in muscles of roe deers and mooses are shown to be defined by specific features of the diets of these animals and variations in 137Cs content in the main diet components.  相似文献   

2.
3.
Many organisms reproduce in temporary aggregations where estimates of colony size can be made by direct counts. When individuals are not synchronous, however, early breeders depart before the last arrive, so counts underestimate the total breeding population. We present a model describing a colony's census as a function of arrival, breeding tenure, and the correlation between them, and we use it to illustrate how variance in arrival and tenure affect the census. Counts of breeding female northern elephant seals ( Mirounga angustirostris ) from 1975 to 2007 were used to test the model. Four of the model's parameters—population size, mean and variance of arrival date, and the correlation between arrival date and breeding tenure—could be estimated from census data using a Bayesian approach; prior estimates of two other parameters—mean tenure and its variance—had to be used to avoid overparameterization. The model's predictions fit observed censuses well and produced reliable estimates of population size and arrival behavior, showing that the maximum census was 8%–16% below the total number of breeding females. This method could be used for estimating abundance in any asynchronous aggregation, given independent information on one of the defining distributions: arrival, tenure, or departure.  相似文献   

4.
In this paper a generalization of the Poisson regression model indexed by a shape parameter is proposed for the analysis of life table and follow-up data with concomitant variables. The model is suitable for analysis of extra-Poisson variation data. The model is used to fit the survival data given in Holford (1980). The model parameters, the hazard and survival functions are estimated by the method of maximum likelihood. The results obtained from this study seem to be comparable to those obtained by Chen (1988). Approximate tests of the dispersion and goodness-of-fit of the data to the model are also discussed.  相似文献   

5.
With the advancement in computer technology, it has become possible to fit complex models to neuronal data. In this work, we test how two methods can estimate parameters of simple neuron models (passive soma) to more complex ones (neuron with one dendritic cylinder and two active conductances). The first method uses classical voltage traces resulting from current pulses injection (time domain), while the second uses measures of the neuron's response to sinusoidal stimuli (frequency domain). Both methods estimate correctly the parameters in all cases studied. However, the time-domain method is slower and more prone to estimation errors in the cable parameters than the frequency-domain method. Because with noisy data the goodness of fit does not distinguish between different solutions, we suggest that running the estimation procedure a large number of times might help find a good solution and can provide information about the interactions between parameters. Also, because the formulation used for the model's response in the frequency domain is analytical, one can derive a local sensitivity analysis for each parameter. This analysis indicates how well a parameter is likely to be estimated and helps choose an optimal stimulation protocol. Finally, the tests suggest a strategy for fitting single-cell models using the two methods examined.  相似文献   

6.
Modelling survival data from long‐term follow‐up studies presents challenges. The commonly used proportional hazards model should be extended to account for dynamic behaviour of the effects of fixed covariates. This work illustrates the use of reduced rank models in survival data, where some of the covariate effects are allowed to behave dynamically in time and some as fixed. Time‐varying effects of the covariates can be fitted by using interactions of the fixed covariates with flexible transformations of time based on b‐splines. To avoid overfitting, a reduced rank model will restrict the number of parameters, resulting in a more sensible fit to the data. This work presents the basic theory and the algorithm to fit such models. An application to breast cancer data is used for illustration of the suggested methods.  相似文献   

7.
The integration of large quantities of biological information into mathematical models of cell metabolism provides a way for quantitatively evaluating the effect of parameter changes on simultaneous, coupled, and, often, counteracting processes. From a practical point of view, the validity of the model's predictions would critically depend on its quality. Among others, one of the critical steps that may compromise this quality is to decide which are the boundaries of the model. That is, we must decide which metabolites are assumed to be constants, and which fluxes are considered to be the inputs and outputs of the system. In this article, we analyze the effect of the experimental uncertainty on these variables on the system's characterization. Using a previously defined model of glucose fermentation in Saccharomyces cerevisiae, we characterize the effect of the uncertainty on some key variables commonly considered to be constants in many models of glucose metabolism, i.e., the intracellular pH and the pool of nucleotides. Without considering if this variability corresponds to a possible true physiological phenomenon, the goal of this article is to illustrate how this uncertainty may result in an important variability in the systemic responses predicted by the model. To characterize this variability, we analyze the utility and limitations of computing the sensitivities of logarithmic-gains (control coefficients) to the boundary parameters. With the exception of some special cases, our analysis shows that these sensitivities are good indicators of the dependence of the model systemic behavior on the parameters of interest.  相似文献   

8.
This paper proposes a model for the expected probability distribution for a certain class of biological structures. In particular, a model is derived for the distribution of lengths of helices, sheets, turns, and coils as a function of the length of the structure divided by the length of the protein it is contained in. A fit between the derived lognormal function and the structures for some proteins whose three-dimensional structure is known was significant. The fit produces fundamental parameters particular to each structure type that are related to the underlying structure and its morphogenesis. The importance of the result is that a universal mathematical distribution can be used to explain certain protein morphogeneses. Also, these fundamental parameters can be used as an aid in predicting whether a given sequence is a particular secondary structure or not, without a knowledge of its three-dimensional structure.  相似文献   

9.
A method is presented for the estimation of the complete time course of muscle active state. The method is based on the selection of a proper model for the muscle, consisting of linear and non-linear components, and on the estimation of its parameters from a simple experiment. The model's parameters are estimated, using the least square method, from measurements of a tetanized muscle's response to a change of its length. The time course of the active state is calculated from an isometric twitch tension response of the same muscle. The twitch tension response is taken as the system's output, and the active state as its input. The latter can be estimated since the system parameters have already been estimated from the tetanized muscle experiment. Experiments were performed on the gastrocnemius muscle of frogs and cats. Results are given for the whole active state time course of these muscles. The results show that the peak active state force does not reach tetanic value, and a negative force is generated during the relaxation period. Additional experiments were carried out with the purpose of verifying the existence of this force; however, no conclusive results were obtained.This research was supported by the Julius Silver Institute of Bio-Medical Engineering Sciences, Grant 050-304  相似文献   

10.
Higher-order polynomial functions can be used as a constitutive model to represent the mechanical behaviour of biological materials. The goal of this study was to present a method for assessing the fit of a given constitutive three-dimensional material model. Goodness of fit was assessed using multiple parameters including the root mean square error and Hotelling's T 2-test. Specifically, a polynomial model was used to characterise the stress–strain data, varying the number of model terms used (45 combinations of between 3 and 11 terms) and the manner of optimisation used to establish model coefficients (i.e. determining coefficients either by parameterisation of all data simultaneously or averaging coefficients obtained by parameterising individual data trials). This framework for model fitting helps to ensure that a given constitutive formulation provides the best characterisation of biological material mechanics.  相似文献   

11.
An impressive fit to historical data suggests to biologists that a given ecological model is highly valid. Models often achieve this fit at the expense of exaggerated complexity that is not justified by empirical evidence. Because overfitted theories complement the traditional assumption that ecology is 'messy', they generally remain unquestioned. Using predation theory as an example, we suggest that a fit-driven appraisal of model value is commonly misdirected; although fit to historical data can be important, the simplicity and generality of a theory--and thus its ecological value--are of comparable importance. In particular, we argue that theories whose complexity greatly exceeds the complexity of the problem that they address should be rejected. We suggest heuristics for distinguishing between valuable ecological theories and their overfitted brethren.  相似文献   

12.
This paper proposes the use of hidden Markov time series models for the analysis of the behaviour sequences of one or more animals under observation. These models have advantages over the Markov chain models commonly used for behaviour sequences, as they can allow for time-trend or expansion to several subjects without sacrificing parsimony. Furthermore, they provide an alternative to higher-order Markov chain models if a first-order Markov chain is unsatisfactory as a model. To illustrate the use of such models, we fit multivariate and univariate hidden Markov models allowing for time-trend to data from an experiment investigating the effects of feeding on the locomotory behaviour of locusts (Locusta migratoria).  相似文献   

13.
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data.  相似文献   

14.
Multiple components linear least-squares methods have been proposed for the detection of periodic components in nonsinusoidal longitudinal time series. However, a proper test for comparison of parameters obtained from this method for two or more time series is not yet available. Accordingly, we propose two methods, one parametric and one nonparametric, to compare parameters from rhythmometric models with multiple components. The parametric method is based on techniques commonly and generally employed in linear regression analysis. The comparison of parameters among two or more time series is accomplished by the use of so-called dummy variables. The nonparametric method is based on bootstrap techniques. This approach basically tests if the difference in any given parameter obtained by fitting a model with the same periods to two different longitudinal time series differs from zero. This method calculates a confidence interval for the difference in the tested parameter. If this interval does not contain zero, it can be concluded that the parameters obtained from the two time series are different with high probability. An estimation of the p-value for the corresponding test can also be calculated. By the use of similar bootstrap techniques, confidence intervals can also be obtained for any parameter derived from the multiple component fit of several periods to nonsinusoidal longitudinal time series, including the orthophase (peak time), bathyphase (trough time), and global amplitude (difference between the maximum and the minimum) of the fitted model waveform. These methods represent a valuable tool for the comparison of rhythm parameters obtained by multiple component analysis, and they render this approach as a generally applicable one for waveform representation and detection of periodicities in nonsinusoidal, sparse, and noisy longitudinal time series sampled with either equidistant or unequidistant observations.  相似文献   

15.
Quantitative analysis of experiments on bacterial chemotaxis to naphthalene   总被引:6,自引:0,他引:6  
A mathematical model was developed to quantify chemotaxis to naphthalene by Pseudomonas putida G7 (PpG7) and its influence on naphthalene degradation. The model was first used to estimate the three transport parameters (coefficients for naphthalene diffusion, random motility, and chemotactic sensitivity) by fitting it to experimental data on naphthalene removal from a discrete source in an aqueous system. The best-fit value of naphthalene diffusivity was close to the value estimated from molecular properties with the Wilke-Chang equation. Simulations applied to a non-chemotactic mutant strain only fit the experimental data well if random motility was negligible, suggesting that motility may be lost rapidly in the absence of substrate or that gravity may influence net random motion in a vertically oriented experimental system. For the chemotactic wild-type strain, random motility and gravity were predicted to have a negligible impact on naphthalene removal relative to the impact of chemotaxis. Based on simulations using the best-fit value of the chemotactic sensitivity coefficient, initial cell concentrations for a non-chemotactic strain would have to be several orders of magnitude higher than for a chemotactic strain to achieve similar rates of naphthalene removal under the experimental conditions we evaluated. The model was also applied to an experimental system representing an adaptation of the conventional capillary assay to evaluate chemotaxis in porous media. Our analysis suggests that it may be possible to quantify chemotaxis in porous media systems by simply adjusting the model's transport parameters to account for tortuosity, as has been suggested by others.  相似文献   

16.
Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model   总被引:1,自引:0,他引:1  
This work is motivated by the observation of remarkably slow firing in the uncoupled Hodgkin-Huxley model, depending on parameters tau( h ), tau( n ) that scale the rates of change of the gating variables. After reducing the model to an appropriate nondimensionalized form featuring one fast and two slow variables, we use geometric singular perturbation theory to analyze the model's dynamics under systematic variation of the parameters tau( h ), tau( n ), and applied current I. As expected, we find that for fixed (tau( h ), tau( n )), the model undergoes a transition from excitable, with a stable resting equilibrium state, to oscillatory, featuring classical relaxation oscillations, as I increases. Interestingly, mixed-mode oscillations (MMO's), featuring slow action potential generation, arise for an intermediate range of I values, if tau( h ) or tau( n ) is sufficiently large. Our analysis explains in detail the geometric mechanisms underlying these results, which depend crucially on the presence of two slow variables, and allows for the quantitative estimation of transitional parameter values, in the singular limit. In particular, we show that the subthreshold oscillations in the observed MMO patterns arise through a generalized canard phenomenon. Finally, we discuss the relation of results obtained in the singular limit to the behavior observed away from, but near, this limit.  相似文献   

17.
Model selection is an essential issue in longitudinal data analysis since many different models have been proposed to fit the covariance structure. The likelihood criterion is commonly used and allows to compare the fit of alternative models. Its value does not reflect, however, the potential improvement that can still be reached in fitting the data unless a reference model with the actual covariance structure is available. The score test approach does not require the knowledge of a reference model, and the score statistic has a meaningful interpretation in itself as a goodness-of-fit measure. The aim of this paper was to show how the score statistic may be separated into the genetic and environmental parts, which is difficult with the likelihood criterion, and how it can be used to check parametric assumptions made on variance and correlation parameters. Selection of models for genetic analysis was applied to a dairy cattle example for milk production.  相似文献   

18.
Metabolic system modeling for model-based glycaemic control is becoming increasingly important. Few metabolic system models are clinically validated for both fit to the data and prediction ability. This research introduces a new additional form of pharmaco-dynamic (PD) surface comparison for model analysis and validation. These 3D surfaces are developed for 3 clinically validated models and 1 model with an added saturation dynamic. The models include the well-known Minimal Model. They are fit to two different data sets of clinical PD data from hyperinsulinaemic clamp studies at euglycaemia and/or hyperglycaemia. The models are fit to the first data set to determine an optimal set of population parameters. The second data set is used to test trend prediction of the surface modeling as it represents a lower insulin sensitivity cohort and should thus require only scaling in these (or related) parameters to match this data set. This particular approach clearly highlights differences in modeling methods, and the model dynamics utilized that may not appear as clearly in other fitting or prediction validation methods.Across all models saturation of insulin action is seen to be an important determinant of prediction and fit quality. In particular, the well-reported under-modeling of insulin sensitivity in the Minimal Model can be seen in this context to be a result of a lack of saturation dynamics, which in turn affects its ability to detect differences between cohorts. The overall approach of examining PD surfaces is seen to be an effective means of analyzing and thus validating a metabolic model's inherent dynamics and basic trend prediction on a population level, but is not a replacement for data driven, patient-specific fit and prediction validation for clinical use. The overall method presented could be readily generalized to similar PD systems and therapeutics.  相似文献   

19.
Simplified mechanistic models in ecology have been criticised for the fact that a good fit to data does not imply the mechanism is true: pattern does not equal process. In parallel, the maximum entropy principle (MaxEnt) has been applied in ecology to make predictions constrained by just a handful of state variables, like total abundance or species richness. But an outstanding question remains: what principle tells us which state variables to constrain? Here we attempt to solve both problems simultaneously, by translating a given set of mechanisms into the state variables to be used in MaxEnt, and then using this MaxEnt theory as a null model against which to compare mechanistic predictions. In particular, we identify the sufficient statistics needed to parametrise a given mechanistic model from data and use them as MaxEnt constraints. Our approach isolates exactly what mechanism is telling us over and above the state variables alone.  相似文献   

20.
BACKGROUND: Tendon's mechanical behaviors have frequently been quantified using the quasi-linear viscoelastic (QLV) model. The QLV parameters are typically estimated by fitting the model to a single-step stress relaxation experiment. Unfortunately, overshoot of the target strain occurs to some degree in most experiments. This has never been formally investigated even though failing to measure, minimize, or compensate for overshoot may cause large errors in the estimation of parameters. Therefore, the objective of this study was to investigate the effect of overshoot on the estimation of QLV parameters. METHOD OF APPROACH: A simulated experiment was first performed to quantify the effect of different amounts of overshoot on the estimated QLV parameters. Experimental data from tendon was then used to determine if the errors associated with overshoot could be reduced when a direct fit is used (i.e., the actual strain history was used in the curve fit). RESULTS: We found that both the elastic and viscous QLV parameters were incorrectly estimated if overshoot was not properly accounted for in the fit. Furthermore, the errors associated with overshoot were partially reduced when overshoot was accounted for using a direct fit. CONCLUSIONS: A slow ramp rate is recommended to limit the amount of overshoot and a direct fit is recommended to limit the errors associated with overshoot, although other approaches such as adjusting the control system to limit overshoot could also be utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号