首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to ethanol for several days increases the number and function of dihydropyridine-sensitive Ca2+ channels in excitable tissues. In the neural cell line PC12, this process is blocked by inhibitors of protein kinase C (PKC), suggesting that PKC mediates ethanol-induced increases in Ca2+ channels. We report that treatment with 25-200 mM ethanol for 2-8 days increased PKC activity in PC12 cells and NG108-15 neuroblastoma-glioma cells. Detailed studies in PC12 cells showed that ethanol also increased phorbol ester binding and immunoreactivity to PKC delta and PKC epsilon. These changes were associated with increased PKC-mediated phosphorylation. Ethanol did not activate the enzyme directly, nor did ethanol increase levels of diacylglycerol. Ethanol-induced increases in PKC levels may promote up-regulation of Ca2+ channels, and may also regulate the expression and function of other proteins involved in cellular adaptation to ethanol.  相似文献   

2.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

3.
Dihydropyridine-sensitive Ca2+ channels exist in many different types of cells and are believed to be regulated by various protein phosphorylation and dephosphorylation reactions. The present study concerns the phosphorylation of a putative component of dihydropyridine-sensitive Ca2+ channels by the calcium and phospholipid-dependent protein kinase, protein kinase C. A skeletal muscle peptide of 165 kDa, which is known to contain receptors for dihydropyridines, phenylalkylamines, and other Ca2+ channel effectors, was found to be an efficient substrate for protein kinase C when the peptide was phosphorylated in its membrane-bound state. Protein kinase C incorporated 1.5-2.0 mol of phosphate/mol of peptide within 2 min into the 165-kDa peptide in incubations carried out at 37 degrees C. In contrast to the membrane-bound peptide, the purified 165-kDa peptide in detergent solution was phosphorylated to a markedly less extent than its membrane-bound counterpart; less than 0.1 mol of phosphate/mol of peptide was incorporated. Preincubation of the membranes with several types of drugs known to be Ca2+ channel activators or inhibitors had no specific effects on the rate and/or extent of phosphorylation of the 165-kDa peptide by protein kinase C. The phosphorylation of the membrane-bound 165-kDa peptide by protein kinase C was compared to that catalyzed by cAMP-dependent protein kinase and was found to be not additive. Prior phosphorylation of the 165-kDa peptide by cAMP-dependent protein kinase prevented subsequent phosphorylation of the peptide by protein kinase C. Phosphoamino acid analysis indicated that protein kinase C phosphorylated the 165-kDa peptide at both serine and threonine residues. Phosphopeptide mapping experiments showed that protein kinase C phosphorylated one unique site in the 165-kDa peptide, and, in addition, other sites that were phosphorylated by either cAMP-dependent protein kinase or a multifunctional Ca2+/calmodulin-dependent protein kinase. The results suggest that the 165-kDa dihydropyridine/phenylalkylamine receptor could serve as a physiological substrate of protein kinase C in intact cells. It is therefore possible that the regulation of dihydropyridine-sensitive Ca2+ channels by activators of protein kinase C may occur at the level of this peptide.  相似文献   

4.
PC12 cells, a cloned rat pheochromocytoma cell line, were treated with digitonin to render the plasma membrane permeable to ions and proteins. At a cell density of 2-6 X 10(5) cells/cm2, incubation with 7.5 microM digitonin permitted a Ca2+-dependent release of 25-40% of the catecholamine within 18 min in the presence of 10 microM Ca2+. Half-maximal secretion occurred at 0.5-1 microM Ca2+. PC12 cultures at lower cell densities were more sensitive to digitonin and gave more variable results. Secretion in the presence of digitonin and Ca2+ began after a 2-min lag and continued for up to 30 min. When cells were treated for 3 min in digitonin and then stimulated with Ca2+ in the absence of digitonin, secretion occurred in the same manner but without the initial lag. Optimal secretion from PC12 cells was also dependent upon the presence of Mg2+ and ATP. Permeabilized PC12 cells exhibited a slow time-dependent loss of secretory responsiveness which was correlated with the release of a cytosolic marker, lactate dehydrogenase (134 kDa). This suggests that digitonin permeabilization allows soluble constituents necessary for secretion to leave the cell in addition to allowing Ca2+ and ATP access into the cell interior. Ca2+-dependent secretion was completely inhibited by exposure of digitonin-permeabilized cells to 100 micrograms/ml trypsin (27 kDa), whereas secretion was only slightly inhibited by trypsin exposure prior to digitonin treatment. Thus, an intracellular, trypsin-sensitive protein is probably involved in secretion. The data also indicate that the same population of digitonin-treated cells which responded to Ca2+ was permeable to a 27-kDa protein. 1,2-Dioctanoylglycerol and phorbol esters which activate protein kinase C enhanced the Ca2+-dependent and Ca2+-independent secretion in digitonin-permeabilized PC12 cells. Thus, protein kinase C appears to be involved in the regulation of catecholamine secretion from permeabilized PC12 cells.  相似文献   

5.
The effects of exogenous GM1 ganglioside on depolarization and ligand-induced Ca2+ signaling were investigated in PC12 cells. Cellular responses to K+ depolarization and bradykinin application in control and GM1-treated cells were examined with respect to: 1) changes in the intracellular Ca2+ concentration ([Ca2+]i) measured using fura-2 fluorescence in single cells, and 2) changes in Ca(2+)-dependent protein kinase activity as assayed by two-dimensional phosphopeptide analysis of the site-specific phosphorylation of tyrosine hydroxylase. Pretreatment of cells with GM1 (10 or 100 microM) enhanced K+ depolarization-stimulated increases in [Ca2+]i and in 32PO4 incorporation into tyrosine hydroxylase phosphopeptide T2, a Ca2+/calmodulin-dependent protein kinase II substrate. In contrast, GM1 treatment had no effect on the transient increases in [Ca2+]i evoked by bradykinin or on bradykinin-induced increases in the site-specific phosphorylation of tyrosine hydroxylase. The depolarization-induced and GM1-enhanced increases in [Ca2+]i and T2 phosphorylation were prevented by removal of external Ca2+ or pretreatment with 1 microM nitrendipine, suggesting that these increases result from Ca2+ entry through dihydropyridine-sensitive Ca2+ channels. The ability of exogenous gangliosides to potentiate increases in [Ca2+]i may underlie their diverse neuritogenic and neurotrophic actions in the nervous system.  相似文献   

6.
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.  相似文献   

7.
The role of various intracellular signals and of their possible interactions in the control of neurotransmitter release was investigated in PC12 cells. To this purpose, agents that affect primarily the cytosolic concentration of Ca2+, [Ca2+]i (ionomycin, high K+), agents that affect cyclic AMP concentrations (forskolin; the adenosine analogue phenylisopropyladenosine; clonidine) and activators of protein kinase C (phorbol esters) were applied alone or in combination to either growing chromaffin-like PC12-cells, or to neuron-like PC12+ cells differentiated by treatment with NGF (nerve growth factor). In addition, the release effects of muscarinic-receptor stimulation (which causes increase in [Ca2+]i, activation of protein kinase C and decrease in cyclic AMP) were investigated. Two techniques were employed to measure catecholamine release: static incubation of [3H]dopamine-loaded cells, and perfusion incubation of unlabelled cells coupled to highly sensitive electrochemical detection of released catecholamines. The results obtained demonstrate that: (1) release from PC12 cells can be elicited by both raising [Ca2+]i and activating protein kinases (protein kinase C and, although to a much smaller extent, cyclic AMP-dependent protein kinase); and (2) these various control pathways interact extensively. Activation of muscarinic receptors by carbachol induced appreciable release responses, which appeared to be due to a synergistic interplay between [Ca2+]i and protein kinase C activation. The muscarinic-induced release responses tended to become inactivated rapidly, possibly by feedback desensitization of the receptor mediated by protein kinase C. Muscarinic inactivation was prevented (or reversed) by agents that increase, and accelerated by agents that decrease, cyclic AMP. Agents that stimulate release primarily through the Ca2+ pathway (ionomycin and high K+) were found to be equipotent in both PC12- and PC12+ cells, whereas the protein kinase C activator 12-O-tetradecanoyl-phorbol 13-acetate was approx. 10-fold less potent in PC12+ cells, when administered either alone or in combination with ionomycin. In contrast, the cell binding of phorbol esters was not greatly modified by NGF treatment. Thus control of neurotransmitter release from PC12 cells is changed by differentiation, with a diminished role of the mechanism mediated by protein kinase C.  相似文献   

8.
We have examined the effects of cAMP elevating agents on the phosphorylation of dihydropyridine-sensitive Ca2+ channels in intact newborn chick skeletal muscle. In situ treatment with the beta-adrenergic receptor agonist isoproterenol resulted in the phosphorylation of the 170-kDa alpha 1 subunit in the intact cells, as evidenced by a marked decrease in the ability of the alpha 1 peptide to serve as a substrate in in vitro back phosphorylation reactions with [gamma-32P]ATP and the purified catalytic subunit of cAMP-dependent protein kinase. The phosphorylation of the 52-kDa beta subunit was not affected. The effects of isoproterenol were time- and concentration-dependent and were mimicked by other cAMP elevating agents but not by the Ca2+ ionophore A23187 or a protein kinase C activator. To test for functional effects of the observed phosphorylation, purified channels were reconstituted into liposomes containing entrapped fluo-3, and depolarization-sensitive and dihydropyridine-sensitive Ca2+ influx was measured. Channels from isoproterenol-treated muscle exhibited an increased rate and extent of Ca2+ influx compared to control preparations. The effects of isoproterenol pretreatment could be mimicked by phosphorylating the channels with cAMP-dependent protein kinase in vitro. These results demonstrate that the alpha 1 subunit of the dihydropyridine-sensitive Ca2(+)-channels is the primary target of cAMP-dependent phosphorylation in intact muscle and that the phosphorylation of this protein leads to activation of channel activity.  相似文献   

9.
10.
Application of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to PC12 cells under resting conditions evoked quantal catecholamine secretion, as detected amperometrically. This effect was not mimicked by 4alpha-phorbol-12,13-didecanoate, another phorbol ester, which is inactive with respect to protein kinase C activation, and was prevented by the protein kinase C inhibitor bisindolylmaleimide. TPA also caused a rise of [Ca(2+)](i) in Fura-2-loaded PC12 cells, and again this was not mimicked by 4alpha-phorbol-12,13-didecanoate and could be blocked by bisindolylmaleimide. TPA-evoked secretion was entirely dependent on extracellular Ca(2+) and was fully abolished by nifedipine, as were TPA-induced rises of [Ca(2+)](i). Resting membrane potential, monitored using perforated patch recordings, was unaffected by TPA. However, a small (6-8 mV) hyperpolarizing shift in the voltage dependence of Ca(2+) channel currents (determined using whole-cell patch clamp recordings) was induced by TPA, and this could be fully prevented by nifedipine. In contrast to results with depolarizing stimuli, which evoke exocytosis because of Ca(2+) influx through N-type channels in these cells, the present results indicate that protein kinase C activation leads directly to quantal catecholamine secretion in the absence of depolarizing stimuli via a selective shift in the activation of L-type Ca(2+) channels.  相似文献   

11.
To clarify whether protein kinase is associated with glucocorticoid-induced Ca2+ influx into vascular smooth muscle cells, we investigated the effects of protein kinase inhibitors on dexamethasone-induced 45Ca2+ uptake and dihydropyridine binding in A7r5 cells. Protein kinase C inhibitors (staurosporine and UCN-01) abolished the dexamethasone-induced 45Ca2+ uptake and [methyl-3H]PN 200-110 binding. In contrast, KT5720 and KT5823, which are more specific inhibitors of cAMP-dependent protein kinase and cGMP-dependent protein kinase, respectively, did not affect the effects of dexamethasone. Treatment with 100 nM dexamethasone for 48 hours increased protein kinase C activity in A7r5 cells. These results suggest that glucocorticoids increase Ca2+ influx through dihydropyridine-sensitive channels, linked to activation of protein kinase C in vascular smooth muscle cells.  相似文献   

12.
Acute treatment of rat spinal cord-dorsal root ganglion cocultured neurons with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known activator of protein kinase C, inhibited the dihydropyridine-sensitive voltage-dependent 45Ca2+ influx measured in these cells (IC50 of approximately 100 nM, 66% inhibition at 1 microM TPA). However, prolonged preincubation (24 h) of the cells with 100 nM TPA followed by extensive washing completely abolished, i.e., desensitized, the capacity of a second application of TPA to inhibit the activity of the voltage-dependent Ca2+ channels. Moreover, this treatment also abolished the inhibition of Ca2+ influx produced by kappa-opiate as well as by alpha 2-adrenergic and muscarinic receptor agonists. Substantial desensitization was already observed following a 1-h pretreatment with 100 nM TPA. In contrast to TPA, an inactive phorbol ester (4 beta-phorbol 13-acetate) did not affect the inhibition of the voltage-dependent Ca2+ influx by these receptor agonists. These results suggest that protein kinase C may have a role in the modulation of Ca2+ channels by kappa-opiate, alpha 2-adrenergic, and muscarinic receptor agonists.  相似文献   

13.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

14.
Treatment with 200 mM ethanol for 6 days increased binding of the Ca2+ channel antagonist, (+)-[3H]PN 200-110, to intact PC12 cells in culture. Enhancement of binding by ethanol was due to an increase in binding site number without appreciable change in binding affinity. Long-term exposure to Ca2+ channel antagonist drugs (nifedipine, verapamil, or diltiazem), which, like ethanol, acutely inhibit Ca2+ flux, failed to alter (+)-[3H]PN 200-110 binding to PC12 membranes. Cotreatment of ethanol-containing cultures with the Ca2+ channel agonist, Bay K 8644, did not attenuate the response to ethanol; instead, chronic exposure to Bay K 8644 alone increased (+)-[3H]PN 200-110 binding. These results suggest that chronic exposure to ethanol increases Ca2+ channel antagonist receptor density in living neural cells, but that acute inhibition of Ca2+ flux by ethanol is unlikely to trigger this response.  相似文献   

15.
16.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

17.
Ca2+-dependent phosphorylation of tyrosine hydroxylase in PC12 cells   总被引:5,自引:1,他引:4  
Ca2+-dependent protein phosphorylation has been detected in numerous tissues and may mediate some of the effects of hormones and other extracellular stimuli on cell function. In this paper we demonstrate that a Ca2+/calmodulin-dependent protein kinase similar to the enzyme previously purified and characterized from rat brain is present in PC12, a rat pheochromocytoma cell line. We show that Ca2+ influx elicited by various forms of cell stimulation leads to increased 32P incorporation into tyrosine hydroxylase (TH), a major phosphoprotein in these cells. Several other unidentified proteins are either phosphorylated or dephosphorylated as a result of Ca2+ influx. Acetylcholine stimulates TH phosphorylation by activation of nicotinic receptors. K+-induced depolarization stimulates TH phosphorylation in a Ca2+-dependent manner, presumably by opening voltage-dependent Ca2+ channels. Ca2+ influx that results from the direct effects of the ionophore A23187 also leads to TH phosphorylation. Phosphorylation of TH is accompanied by an activation of the enzyme. These Ca2+-dependent effects are independent of cyclic AMP and thus implicate a Ca2+-dependent protein kinase as a mediator of both hormonal and electrical stimulation of PC12 cells.  相似文献   

18.
Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.  相似文献   

19.
Multiple Ca2+ signaling pathways converge on CaM kinase in PC12 cells.   总被引:1,自引:0,他引:1  
M MacNicol  H Schulman 《FEBS letters》1992,304(2-3):237-240
The role of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in mediating various Ca2+ signaling pathways was examined in PC12 cells. Conversion of the kinase to a Ca(2+)-independent form was used to monitor which neurotransmitters activate the enzyme in situ. CaM kinase responds to Ca2+ influx elicited by ligand-gated Ca2+ channels for ATP and acetylcholine. It also responds to Ca2+ mobilization of IP3-sensitive stores elicited by phospholipase C-linked receptors for ATP and acetylcholine as well as by caffeine. CaM kinase mediates the actions of many neurotransmitters and Ca2+ signaling pathways.  相似文献   

20.
The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C secondary to the ethanol-induced activation of phospholipase C and activation of protein kinase C. Ethanol treatment also affects the sensitivity of the phospholipase C system to control by protein kinases A and C. The data indicate that ethanol can affect the control of intracellular signal transduction processes in liver cells under physiologically relevant conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号