首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

2.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

3.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

4.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

5.
Soderberg T  Poulter CD 《Biochemistry》2000,39(21):6546-6553
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the alkylation of the exocyclic amine of A37 by a dimethylallyl unit in tRNAs with an adenosine in the third anticodon position (position 36). By use of purified recombinant enzyme, steady- state kinetic studies were conducted with chemically synthesized RNA oligoribonucleotides to determine the essential elements within the tRNA anticodon stem-loop structure required for recognition by the enzyme. A 17-base oligoribonucleotide corresponding to the anticodon stem-loop of E. coli tRNA(Phe) formed a stem-loop minihelix (minihelix(Phe)) when annealed rapidly on ice, while the same molecule formed a duplex structure with a central loop when annealed slowly at higher concentrations. Both the minihelix and duplex structures gave k(cat)s similar to that for the normal substrate (full-length tRNA(Phe) unmodified at A37), although the K(m) for minihelix(Phe) was approximately 180-fold higher than full-length tRNA. The A36-A37-A38 motif, which is completely conserved in tRNAs modified by the enzyme, was found to be important for modification. Changing A36 to G in the minihelix resulted in a 260-fold reduction in k(cat) compared to minihelix(Phe) and a 13-fold increase in K(m). An A38G variant was modified with a 9-fold reduction in k(cat) and a 5-fold increase in K(m). A random coil 17-base oligoribonucleotide in which the loop sequence of E. coli tRNA(Phe) was preserved, but the 5 base pair helix stem was completely disrupted and showed no measurable activity, indicating that a helix-loop structure is essential for recognition. Finally, altering the identity of several base pairs in the helical stem did not have a major effect on catalytic efficiency, suggesting that the enzyme does not make base-specific contacts important for binding or catalysis in this region.  相似文献   

6.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

7.
In all organisms, translational initiation takes place on the small ribosomal subunit and two classes of methionine tRNA are present. The initiator is used exclusively for initiation of protein synthesis while the elongator is used for inserting methionine internally in the nascent polypeptide chain. The crystal structure of Escherichia coli initiator tRNA(f)(Met) has been solved at 3.1 A resolution. The anticodon region is well-defined and reveals a unique structure, which has not been described in any other tRNA. It encompasses a Cm32*A38 base pair with a peculiar geometry extending the anticodon helix, a base triple between A37 and the G29-C41 pair in the major groove of the anticodon stem and a modified stacking organization of the anticodon loop. This conformation is associated with the three GC basepairs in the anticodon stem, characteristic of initiator tRNAs and suggests a mechanism by which the translation initiation machinery could discriminate the initiator tRNA from all other tRNAs.  相似文献   

8.
We show that the structure and/or sequence of the first three base pairs at the end of the amino acid acceptor stem of Escherichia coli initiator tRNA and the discriminator base 73 are important for its formylation by E. coli methionyl-tRNA transformylase. This conclusion is based on mutagenesis of the E. coli initiator tRNA gene followed by measurement of kinetic parameters for formylation of the mutant tRNAs in vitro and function in protein synthesis in vivo. The first base pair found at the end of the amino acid acceptor stem in all other tRNAs is replaced by a C.A. "mismatch" in E. coli initiator tRNA. Mutation of this C.A. to U:A, a weak base pair, or U.G., a mismatch, has little effect on formylation, whereas mutation to C:G, a strong base pair, has a dramatic effect lowering Vmax/Kappm by 495-fold. Mutation of the second basepair G2:C71 to U2:A71 lowers Vmax/Kappm by 236-fold. Replacement of the third base-pair C3:G70 by U3:A70, A3:U70, or G3:C70 lowers Vmax/Kappm by about 67-, 27-, and 30-fold, respectively. Changes in the rest of the acceptor stem, dihydrouridine stem, anticodon stem, anticodon sequence, and T psi C stem have little or no effect on formylation.  相似文献   

9.
10.
11.
In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.  相似文献   

12.
13.
14.
We describe the cloning and the DNA sequence of an amber suppressor allele of the Escherichia coli leuX (supP) gene. The suppressor allele codes for a tRNA with anticodon CUA, presumably derived by a single base change from a CAA anticodon. The mature coding sequence of the leuX gene is preceded by a putative Pribnow box sequence (TATAAT) and followed by a termination signal. The sequence of the leuX-coded tRNA is compared with the sequences of the four remaining tRNALeu isoacceptors of E. coli and with two tRNALeu species from bacteriophage T4 and T5. The conserved nucleotides in these seven tRNAs recognized by E. coli leucyl-tRNA synthetase are located mainly in the aminoacyl stem and in the D-stem/loop region.  相似文献   

15.
Pseudouridine synthase 1 (Pus1p) is an unusual site-specific modification enzyme in that it can modify a number of positions in tRNAs and can recognize several other types of RNA. No consensus recognition sequence or structure has been identified for Pus1p. Human Pus1p was used to determine which structural or sequence elements of human tRNA(Ser) are necessary for pseudouridine (Ψ) formation at position 28 in the anticodon stem-loop (ASL). Some point mutations in the ASL stem of tRNA(Ser) had significant effects on the levels of modification and compensatory mutation, to reform the base pair, restored a wild-type level of Ψ formation. Deletion analysis showed that the tRNA(Ser) TΨC stem-loop was a determinant for modification in the ASL. A mini-substrate composed of the ASL and TΨC stem-loop exhibited significant Ψ formation at position 28 and a number of mutants were tested. Substantial base pairing in the ASL stem (3 out of 5 bp) is required, but the sequence of the TΨC loop is not required for modification. When all nucleotides in the ASL stem other than U28 were changed in a single mutant, but base pairing was retained, a near wild-type level of modification was observed.  相似文献   

16.
The imino region of the proton NMR spectrum of Escherichia coli tRNA3Gly has been assigned mainly by sequential nuclear Overhauser effects between neighbouring base pairs and by comparison of assignments of other tRNAs. The effects of magnesium, spermine and temperature on the 1H and 31P NMR spectra of this tRNA were studied. Both ions affect resonances close to the G15 . C48 tertiary base pair and in the ribosylthymine loop. The magnesium studies indicate the presence of an altered tRNA conformer at low magnesium concentrations in equilibrium with the high magnesium form. The temperature studies show that the A7 . U66 imino proton (from a secondary base pair) melts before some of the tertiary hydrogen bonds and that the anticodon stem does not melt sequentially from the ends. Correlation of the ion effects in the 1H and 31P NMR spectra has led to the tentative assignment of two 31P resonances not assigned in the comparable 31P NMR spectrum of yeast tRNAPhe. 31P NMR spectra of E. coli tRNA3Gly lack resolved peaks corresponding to peaks C and F in the spectra of E. coli tRNAPhe and yeast tRNAPhe. In the latter tRNAs these peaks have been assigned to phosphate groups in the anticodon loop. Ion binding E. coli tRNA3Gly and E. coli tRNAPhe had different effects on their 1H NMR spectra which may reflect further differences in their charge distribution and conformation.  相似文献   

17.
In order to select the mischarging mutants of Su+2 glutamine tRNA, auxotrophic amber mutants of E. coli K12 which cannot be suppressed particularly by Su+2 were screened. By utilizing these mutants, cysam235 and metam3, several tens of mischarging mutants of Su+2 were isolated, as those conferring altered suppression patterns for a set of tester amber mutants of bacteria and phages. Nucleotide sequence analysis revealed that the mutation sites were found to be exclusively at psi 37 residue located at the 3'-end of anticodon loop, changing it to either A37 or C37. These mutants were obtained as those suppressing cysam235, and not metam3. From these, secondary mutants were selected. In these mutants suppression patterns were further altered by the additional base substitutions, capable of suppressing metam3. Such mutants were obtained exclusively from A37 and not from C37 mutant tRNA. Additional mutations to A37 were found to be either A29 or C38, which are located at the lowermost two base pairs in anticodon stem. The mischarging sites in Su+2 glutamine tRNA locate in the newly detected region of tRNA, differing from the previous case of Su+3 tyrosine or Su+7 tryptophan tRNAs. Implication of this finding is discussed on L-shaped tRNA molecule in relation to aminoacyl-tRNA synthetase recognition. Suppression patterns given by the double-mutants, A37A29 and A37C38, were consistent with the observation that the mutant tRNAs interact with tryptophanyl-tRNA synthetase.  相似文献   

18.
Interactions of Escherichia coli isoleucyl- and glutamyl-tRNA synthetases and their cognate tRNAs were analyzed by phosphate-alkylation mapping with N-nitroso-N-ethylurea and/or by 1H-NMR analysis. When E. coli tRNA(Ile) was bound with isoleucyl-tRNA synthetase, many of the phosphate groups in the anticodon loop and stem and in the D-stem were protected from alkylation. This result is consistent with that of analysis of imino proton resonances due to the secondary and tertiary base pairs. These analyses also suggested that the L-shaped tertiary structure of tRNA(Ile) is distorted upon complex formation with IleRS because of disruption of some tertiary base pairs. In the case of E. coli tRNA(Glu), several phosphate groups in the D-stem and the variable loop were significantly protected by the cognate synthetase. These results indicate that the two tRNAs, unlike other tRNAs studied so far, have some of the "identity determinants" in the D-stem and/or in the anticodon stem.  相似文献   

19.
We have determined the nucleotide sequence of the major species of E. coli tRNASer and of a minor species having the same GGA anticodon. These two tRNAs should recognize the UCC and UCU codons, the most widely used codons for serine in the highly expressed genes of E. coli. The two sequences differ in only one position of the D-loop. Neither tRNA has a modified adenosine in the position 3'-adjacent to the anticodon. This can be rationalized on the basis of a structural constraint in the anticodon stem and may be related to optimization of the codon-anticodon interaction. Comparison of all E.coli serine tRNAs (and that encoded by bacteriophage T4) reveals characteristic (possibly functional) features. Evolutionary analysis suggests an eubacterial origin of the T4 tRNASer gene and the existence of a recent common ancestor for the tRNASerGGA and tRNASerGUC genes.  相似文献   

20.
In previous work we identified several specific sites in Escherichia coli tRNAfMet that are essential for recognition of this tRNA by E. coli methionyl-tRNA synthetase (MetRS) (EC 6.1.1.10). Particularly strong evidence indicated a role for the nucleotide base at the wobble position of the anticodon in the discrimination process. We have now investigated the aminoacylation activity of a series of tRNAfMet derivatives containing single base changes in each position of the anticodon. In addition, derivatives containing permuted sequences and larger and smaller anticodon loops have been prepared. The variant tRNAs have been enzymatically synthesized in vitro by using T4 RNA ligase (EC 6.5.1.3). Base substitutions in the wobble position have been found to reduce aminoacylation rates by at least five orders of magnitude. Derivatives having base substitutions in the other two positions of the anticodon are aminoacylated 55-18,500 times slower than normal. Nucleotides that have specific functional groups in common with the normal anticodon bases are better tolerated at each of these positions than those that do not. A tRNAfMet variant having a six-membered loop containing only the CA sequence of the anticodon is aminoacylated still more slowly, and a derivative containing a five-membered loop is not measurably active. The normal loop size can be increased by one nucleotide with a relatively small effect on the rate of aminoacylation, which indicates that the spatial arrangement of the nucleotides is less critical than their chemical nature. We conclude from these data that recognition of tRNAfMet requires highly specific interactions of MetRS with functional groups on the nucleotide bases of the anticodon sequence. Several other aminoacyl-tRNA synthetases are known to require one or more anticodon bases for efficient aminoacylation of their tRNA substrates, and data from other laboratories suggest that anticodon sequences may be important for accurate discrimination between cognate and noncoagnate tRNAs by these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号