首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tai CL  Pan WC  Liaw SH  Yang UC  Hwang LH  Chen DS 《Journal of virology》2001,75(17):8289-8297
The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3.  相似文献   

2.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

3.
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) has been shown to possess protease and helicase activities and has also been demonstrated to spontaneously associate with nonstructural protein NS4A (NS4A) to form a stable complex. Previous attempts to produce the NS3/NS4A complex in recombinant baculovirus resulted in a protein complex that aggregated and precipitated in the absence of nonionic detergent and high salt. A single-chain form of the NS3/NS4A complex (His-NS4A21-32-GSGS-NS3-631) was constructed in which the NS4A core peptide is fused to the N-terminus of the NS3 protease domain as previously described (Taremi et al., 1998). This protein contains a histidine tagged NS4A peptide (a.a. 21-32) fused to the full-length NS3 (a.a. 3-631) through a flexible tetra amino acid linker. The recombinant protein was expressed to high levels in Escherichia coli, purified to homogeneity, and examined for NTPase, nucleic acid unwinding, and proteolytic activities. The single-chain recombinant NS3-NS4A protein possesses physiological properties equivalent to those of the NS3/NS4A complex except that this novel construct is stable, soluble and sixfold to sevenfold more active in unwinding duplex RNA. Comparison of the helicase activity of the single-chain recombinant NS3-NS4A with that of the full-length NS3 (without NS4A) and that of the helicase domain alone suggested that the presence of the protease domain and at least the NS4A core peptide are required for optimal unwinding activity.  相似文献   

4.
Hepatitis C virus (HCV) is a positive-strand RNA virus that encodes a helicase required for viral replication. Although HCV does not replicate through a DNA intermediate, HCV helicase unwinds both RNA and DNA duplexes. An X-ray crystal structure of the HCV helicase complexed with (dU)(8) has been solved, and the substrate-amino acids interactions within the catalytic pocket were shown. Among these, residues W501 and V432 were reported to have base stacking interactions and to be important for the unwinding function of HCV helicase. It has been hypothesized that specific interactions between the enzyme and substrate in the catalytic pocket are responsible for the substrate specificity phenotype. We therefore mutagenized W501 and V432 to investigate their role in substrate specificity in HCV helicase. Replacement of W501, but not V432, with nonaromatic residues resulted in complete loss of RNA unwinding activity, whereas DNA unwinding activity was largely unaffected. The loss of unwinding activity was fully restored in the W501F mutant, indicating that the aromatic ring is crucial for RNA helicase function. Analysis of ATPase and nucleic acid binding activities in the W501 mutant enzymes revealed that these activities are not directly responsible for the substrate specificity phenotype. Molecular modeling of the enzyme-substrate interaction at W501 revealed a putative pi-facial hydrogen bond between the 2'-OH of ribose and the aromatic tryptophan ring. This evidence correlates with biochemical results suggesting that the pi-facial bond may play an important role in the RNA unwinding activity of the HCV NS3 protein.  相似文献   

5.
Ma Y  Yates J  Liang Y  Lemon SM  Yi M 《Journal of virology》2008,82(15):7624-7639
A mutation within subdomain 1 of the hepatitis C virus (HCV) NS3 helicase (NS3-Q221L) (M. Yi, Y. Ma, J. Yates, and S. M. Lemon, J. Virol. 81:629-638, 2007) rescues a defect in production of infectious virus by an intergenotypic chimeric RNA (HJ3). Although NS3-Gln-221 is highly conserved across HCV genotypes, the Leu-221 substitution had no effect on RNA replication or NS3-associated enzymatic activities. However, while transfection of unmodified HJ3 RNA failed to produce either extracellular or intracellular infectious virus, transfection of HJ3 RNA containing the Q221L substitution (HJ3/QL) resulted in rapid accumulation of intracellular infectious particles with release into extracellular fluids. In the absence of the Q221L mutation, both NS5A and NS3 were recruited to core protein on the surface of lipid droplets, but there was no assembly of core into high-density, rapidly sedimenting particles. Further analysis demonstrated that a Q221N mutation minimally rescued virus production and led to a second-site I399V mutation in subdomain 2 of the helicase. Similarly, I399V alone allowed only low-level virus production and led to selection of an I286V mutation in subdomain 1 of the helicase which fully restored virus production, confirming the involvement of both major helicase subdomains in the assembly process. Thus, multiple mutations in the helicase rescue a defect in an early-intermediate step in virus assembly that follows the recruitment of NS5A to lipid droplets and precedes the formation of dense intracellular viral particles. These data reveal a previously unsuspected role for the NS3 helicase in early virion morphogenesis and provide a new perspective on HCV assembly.  相似文献   

6.
Hepatitis C virus (HCV) NS3 helicase couples adenosine triphosphate (ATP) binding and hydrolysis to polynucleotide unwinding. Understanding the regulation mechanism of ATP binding will facilitate targeting of the ATP-binding site for potential therapeutic development for hepatitis C. T324, an amino acid residue connecting domains 1 and 2 of NS3 helicase, has been suggested as part of a flexible hinge for opening of the ATP-binding cleft, although the detailed mechanism remains largely unclear. We used computational simulation to examine the mutational effect of T324 on the dynamics of the ATP-binding site. A mutant model, T324A, of the NS3 helicase apo structure was created and energy was minimized. Molecular dynamics simulation was conducted for both wild type and the T324A mutant apo structures to compare their differences. For the mutant structure, histogram analysis of pairwise distances between residues in domains 1 and 2 (E291-Q460, K210-R464 and R467-T212) showed that separation between the two domains was reduced by ~10% and the standard deviation by ~33%. Root mean square fluctuation (RMSF) analysis demonstrated that residues in close proximity to residue 324 have at least 30% RMSF value reductions in the mutant structure. Solvent RMSF analysis showed that more water molecules were trapped near D290 and H293 in domain 1 to form an extensive interaction network constraining cleft opening. We also demonstrated that the T324A mutation established a new atomic interaction with V331, revealing that an atomic interaction cascade from T324 to residues in domains 1 and 2 controls the flexibility of the ATP-binding cleft.  相似文献   

7.
The C-terminal portion of hepatitis C virus (HCV) nonstructural protein 3 (NS3) forms a three domain polypeptide that possesses the ability to travel along RNA or single-stranded DNA (ssDNA) in a 3' to 5' direction. Fueled byATP hydrolysis, this movement allows the protein to displace complementary strands of DNA or RNA and proteins bound to the nucleic acid. HCV helicase shares two domains common to other motor proteins, one of which appears to rotate upon ATP binding. Several models have been proposed to explain how this conformational change leads to protein movement and RNA unwinding, but no model presently explains all existing experimental data. Compounds recently reported to inhibit HCV helicase, which include numerous small molecules, RNA aptamers and antibodies, will be useful for elucidating the role of a helicase in positive-sense single-stranded RNA virus replication and might serve as templates for the design of novel antiviral drugs.  相似文献   

8.
Among the enzymes involved in the life cycle of HCV, the non-structural protein NS3, with its double function of protease and NTPase/helicase, is essential for the virus replication. Exploiting our previous knowledge in the development of nucleotide-mimicking NS3 helicase (NS3h) inhibitors endowed with key structural and electronic features necessary for an optimal ligand-enzyme interaction, we developed the tetrahydroacridinyl derivative 3a as the most potent NS3h competitive inhibitor reported to date (HCV NS3h K(i)=20 nM).  相似文献   

9.
The hepatitis C virus non-structural protein 3 (HCV NS3) possesses both protease and helicase activities that are essential for viral replication. In a previous study, we obtained RNA aptamers that specifically and efficiently inhibited NS3 protease activity (G9 aptamers). In order to add helicase-inhibition capability, we attached (U)14 to the 3'-terminal end of a minimized G9 aptamer, DeltaNEO-III. NEO-III-14U was shown to inhibit the NS3 protease activity more efficiently than the original aptamer and, furthermore, to efficiently inhibit the unwinding reaction by NS3 helicase. In addition, NEO-III-14U has the potential to diminish specific interactions between NS3 and the 3'-UTR of HCV-positive and -negative strands. NEO-III-14U showed effective inhibition against NS3 protease in living cells.  相似文献   

10.
The hepatitis C virus nonstructural 3 protein (NS3) possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion. The serine protease activity is required for proteolytic processing at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B polyprotein cleavage sites. NS3 forms a complex with NS4A, a 54-residue polypeptide that was shown to act as an essential cofactor of the NS3 protease. We have expressed in Escherichia coli the NS3-NS4A precursor; cleavage at the junction between NS3 and NS4A occurs during expression in the bacteria cells, resulting in the formation of a soluble noncovalent complex with a sub-nanomolar dissociation constant. We have assessed the minimal ionic strength and detergent and glycerol concentrations required for maximal proteolytic activity and stability of the purified NS3-NS4A complex. Using a peptide substrate derived from the NS5A-NS5B junction, the catalytic efficiency (kcat/Km) of NS3-NS4A-associated protease under optimized conditions was 55 000 s-1 M-1, very similar to that measured with a recombinant complex purified from eukaryotic cells. Dissociation of the NS3-NS4A complex was found to be fully reversible. No helicase activity was exhibited by the purified NS3-NS4A complex, but NS3 was fully active as a helicase upon dissociation of NS4A. On the other hand, both basal and poly(U)-induced NTPase activity and ssRNA binding activity associated with the NS3-NS4A complex were very similar to those exhibited by NS3 alone. Therefore, NS4A appears to uncouple the ATPase/ssRNA binding and RNA unwinding activities associated with NS3.  相似文献   

11.
Hepatitis C virus (HCV) infects over 170 million persons worldwide. It is the leading cause of liver disease in the U.S. and is responsible for most liver transplants. Current treatments for this infectious disease are inadequate; therefore, new therapies must be developed. Several labs have obtained evidence for a protein complex that involves many of the nonstructural (NS) proteins encoded by the virus. NS3, NS4A, NS4B, NS5A, and NS5B appear to interact structurally and functionally. In this study, we investigated the interaction between the helicase, NS3, and the RNA polymerase, NS5B. Pull-down experiments and surface plasmon resonance data indicate a direct interaction between NS3 and NS5B that is primarily mediated through the protease domain of NS3. This interaction reduces the basal ATPase activity of NS3. However, NS5B stimulates product formation in RNA unwinding experiments under conditions of excess nucleic acid substrate. When the concentrations of NS3 and NS5B are in excess of nucleic acid substrate, NS5B reduces the rate of NS3-catalyzed unwinding. Under pre-steady-state conditions, in which NS3 and substrate concentrations are similar, product formation increased in the presence of NS5B. The increase was consistent with 1:1 complex formed between the two proteins. A fluorescently labeled form of NS3 was used to investigate this interaction through fluorescence polarization binding assays. Results from this assay support interactions that include a 1:1 complex formed between NS3 and NS5B. The modulation of NS3 by NS5B suggests that these proteins may function together during replication of the HCV genome.  相似文献   

12.
Several small molecules identified by high-throughput screening (HTS) were evaluated for their ability to bind to a nonstructural protein 3 (NS3) helicase from hepatitis C virus (HCV). Equilibrium dissociation constants (K(d)'s) of the compounds for this helicase were determined using several techniques including an assay measuring the kinetics of isothermal enzyme denaturation at several concentrations of the test molecule. Effects of two nonhydrolyzable ATP analogs on helicase denaturation were measured as controls using the isothermal denaturation (ITD) assay. Two compounds, 4-(2,4-dimethylphenyl)-2,7,8-trimethyl-4,5-quinolinediamine and 2-phenyl-N-(5-piperazin-1-ylpentyl)quinazolin-4-amine, were identified from screening that inhibited the enzyme and had low micromolar dissociation constants for NS3 helicase in the ITD assay. Low micromolar affinity of the quinolinediamine to helicase was also confirmed by nuclear magnetic resonance experiments. Unfortunately, isothermal titration calorimetry (ITC) experiments indicated that a more water-soluble analog bound to the 47/23-mer oligonucleotide helicase substrate with low micromolar affinity as did the substituted quinazolinamine. There was no further interest in these templates as helicase inhibitors due to the nonspecific binding to enzyme and substrate. A combination of physical methods was required to discern the mode of action of compounds identified by HTS and remove undesirable lead templates from further consideration.  相似文献   

13.
The NS3 protein of hepatitis C virus contains a bipartite structure consisting of an N-terminal serine protease and a C-terminal DEAD box helicase. We show that the C-terminal domain has ATPase and panhelicase activities. The integrity of the helicase function is dependent on the conserved DEAD motif and can be abolished by a His-Ala point mutation, leaving a fully functional nucleoside triphosphatase.  相似文献   

14.
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is believed to be the central catalytic enzyme responsible for HCV replication but there are many unanswered questions about how its activity is controlled. In this study we reveal that two other HCV proteins, NS3 (a protease/helicase) and NS4B (a hydrophobic protein of unknown function), physically and functionally interact with the NS5B polymerase. We describe a new procedure for generating highly pure NS4B, and use this protein in biochemical studies together with NS5B and NS3. To study the functional effects of the protein-protein interactions, we have developed an in vitro replication assay using the natural noncoding 3' regions of the respective positive ((+)-3'-untranslated region) and negative ((-)-3'-terminal region) RNA strands of the HCV genome. Our studies show that NS3 dramatically modulates template recognition by NS5B and changes the synthetic products generated by this enzyme. The use of an NTPase-deficient mutant form of NS3 demonstrates that the NTPase activity (and thus helicase activity) of this protein is specifically required for these effects. Moreover, NS4B is found to be a negative regulator of the NS3-NS5B replication complex. Overall, these results reveal that NS3, NS4B, and NS5B can interact to form a regulatory complex that could feature in the process of HCV replication.  相似文献   

15.
Rho J  Choi S  Seong YR  Choi J  Im DS 《Journal of virology》2001,75(17):8031-8044
The NS3 protein of hepatitis C virus (HCV) contains protease and RNA helicase activities, both of which are likely to be essential for HCV propagation. An arginine residue present in the arginine-glycine (RG)-rich region of many RNA-binding proteins is posttranslationally methylated by protein arginine methyltransferases (PRMTs). Amino acid sequence analysis revealed that the NS3 protein contains seven RG motifs, including two potential RG motifs in the 1486-QRRGRTGRG-1494 motif IV of the RNA helicase domain, in which arginines are potentially methylated by PRMTs. Indeed, we found that the full-length NS3 protein is arginine methylated in vivo. The full-length NS3 protein and the NS3 RNA helicase domain were methylated by a crude human cell extract. The purified PRMT1 methylated the full-length NS3 and the RNA helicase domain, but not the NS3 protease domain. The NS3 helicase bound specifically and comigrated with PRMT1 in vitro. Mutational analyses indicate that the Arg(1493) in the QRR(1488)GRTGR(1493)G region of the NS3 RNA helicase is essential for NS3 protein methylation and that Arg(1488) is likely methylated. NS3 protein methylation by the PRMT1 was decreased in the presence of homoribopolymers, suggesting that the arginine-rich motif IV is involved in RNA binding. The results suggest that an arginine residue(s) in QRXGRXGR motif IV conserved in the virus-encoded RNA helicases can be posttranslationally methylated by the PRMT1.  相似文献   

16.
Hepatitis C virus (HCV) internal non-structural protein 3 (NS3) cleavage can occur in trans in the presence of NS4A. In this study, we have further demonstrated a critical role of the helicase domain in the internal NS3 cleavage, different from HCV polyprotein processing which requires only the serine protease domain. The NTPase domain of NS3 helicase interacts with the RNA binding domain to facilitate internal NS3 cleavage. In addition, NS3 protease activity contributes to the transforming ability of the major internal cleavage product NS3(1-402). These findings imply important roles of the internal cleavage and protease activity of the NS3 protein in the pathogenesis of HCV.

Structured summary

MINT-7306465: NS3 (uniprotkb:P29846) physically interacts (MI:0915) with NS3 (uniprotkb:P29846) by anti tag coimmunoprecipitation (MI:0007).  相似文献   

17.
The nonstructural protein 3 (NS3) helicase/protease is an important component of the hepatitis C virus (HCV) replication complex. We hypothesized that a specific β-strand tethers the C terminus of the helicase domain to the protease domain, thereby maintaining HCV NS3 in a compact conformation that differs from the extended conformations observed for other Flaviviridae NS3 enzymes. To test this hypothesis, we removed the β-strand and explored the structural and functional attributes of the truncated NS3 protein (NS3ΔC7). Limited proteolysis, hydrodynamic, and kinetic measurements indicate that NS3ΔC7 adopts an extended conformation that contrasts with the compact form of the wild-type (WT) protein. The extended conformation of NS3ΔC7 allows the protein to quickly form functional complexes with RNA unwinding substrates. We also show that the unwinding activity of NS3ΔC7 is independent of the substrate 3'-overhang length, implying that a monomeric form of the protein promotes efficient unwinding. Our findings indicate that an open, extended conformation of NS3 is required for helicase activity and represents the biologically relevant conformation of the protein during viral replication.  相似文献   

18.
19.
Multi-conformation continuum electrostatics (MCCE) was used to analyze various structures of the NS3 RNA helicase from the hepatitis C virus in order to determine the ionization state of amino acid side chains and their pKas. In MCCE analyses of HCV helicase structures that lacked ligands, several active site residues were identified to have perturbed pKas in both the nucleic acid binding site and in the distant ATP-binding site, which regulates helicase movement. In all HCV helicase structures, Glu493 was unusually basic and His369 was abnormally acidic. Both these residues are part of the HCV helicase nucleic acid binding site, and their roles were analyzed by examining the pH profiles of site-directed mutants. Data support the accuracy of MCCE predicted pKa values, and reveal that Glu493 is critical for low pH enzyme activation. Several key residues, which were previously shown to be involved in helicase-catalyzed ATP hydrolysis, were also identified to have perturbed pKas including Lys210 in the Walker-A motif and the DExD/H-box motif residues Asp290 and His293. When DNA was present in the structure, the calculated pKas shifted for both Lys210 and Asp290, demonstrating how DNA binding might lead to electrostatic changes that stimulate ATP hydrolysis.  相似文献   

20.
Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号