首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Flap endonuclease 1 (FEN1) has been shown to remove 5' overhanging flap intermediates during base excision repair and to process the 5' ends of Okazaki fragments during lagging-strand DNA replication in vitro. To assess the in vivo role of the mammalian enzyme in repair and replication, we used a gene-targeting approach to generate mice lacking a functional Fen1 gene. Heterozygote animals appear normal, whereas complete depletion of FEN1 causes early embryonic lethality. Fen1(-/-) blastocysts fail to form inner cell mass during cellular outgrowth, and a complete inactivation of DNA synthesis in giant cells of blastocyst outgrowth was observed. Exposure of Fen1(-/-) blastocysts to gamma radiation caused extensive apoptosis, implying an essential role for FEN1 in the repair of radiation-induced DNA damage in vivo. Our data thus provide in vivo evidence for an essential function of FEN1 in DNA repair, as well as in DNA replication.  相似文献   

3.
瓣状内切核酸酶1(flap endonuclease 1,FEN1)是一种结构特异性核酸酶,由一个核心结构域和一条尾链组成。FEN1在DNA修复过程中冈崎片段成熟时RNA引物的切除,长片段碱基切除修复中瓣状结构的切除等过程中发挥着重要作用。FEN1与不同的蛋白质相互作用,在不同的DNA复制和修复途径中发挥着重要作用。FEN1在肿瘤中有着异常的表达,这表明它可能是一种潜在的肿瘤标记物。  相似文献   

4.
In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability.  相似文献   

5.
6.
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.  相似文献   

7.
Flap Endonuclease 1 (FEN1) plays important roles both in DNA replication and in base excision repair (BER). However, in both processes FEN1 substrates are likely to be assembled into chromatin. In order to examine how FEN1 is able to work within chromatin, we prepared model nucleosome substrates containing FEN1-cleavable DNA flaps. We find that human FEN1 binds and cleaves such substrates with efficiencies similar to that displayed with naked DNA. Moreover, we demonstrate that both FEN1 and human DNA ligase I can operate successively on DNA within the same nucleosome. These results suggest that some BER steps may not require nucleosome remodeling in vivo and that FEN 1 activity during Okazaki fragment processing can occur on nucleosomal substrates.  相似文献   

8.
9.
Telomeres are terminal repetitive DNA sequences whose stability requires the coordinated actions of telomere-binding proteins and the DNA replication and repair machinery. Recently, we demonstrated that the DNA replication and repair protein Flap endonuclease 1 (FEN1) is required for replication of lagging strand telomeres. Here, we demonstrate for the first time that FEN1 is required for efficient re-initiation of stalled replication forks. At the telomere, we find that FEN1 depletion results in replicative stress as evidenced by fragile telomere expression and sister telomere loss. We show that FEN1 participation in Okazaki fragment processing is not required for efficient telomere replication. Instead we find that FEN1 gap endonuclease activity, which processes DNA structures resembling stalled replication forks, and the FEN1 interaction with the RecQ helicases are vital for telomere stability. Finally, we find that FEN1 depletion neither impacts cell cycle progression nor in vitro DNA replication through non-telomeric sequences. Our finding that FEN1 is required for efficient replication fork re-initiation strongly suggests that the fragile telomere expression and sister telomere losses observed upon FEN1 depletion are the direct result of replication fork collapse. Together, these findings suggest that other nucleases compensate for FEN1 loss throughout the genome during DNA replication but fail to do so at the telomere. We propose that FEN1 maintains stable telomeres by facilitating replication through the G-rich lagging strand telomere, thereby ensuring high fidelity telomere replication.  相似文献   

10.
11.
Functional regulation of FEN1 nuclease and its link to cancer   总被引:2,自引:0,他引:2  
Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5'-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein-protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models.  相似文献   

12.
Wu Z  Lin Y  Xu H  Dai H  Zhou M  Tsao S  Zheng L  Shen B 《Mutation research》2012,731(1-2):85-91
Flap endonuclease 1 (FEN1), a member of the Rad2 nuclease family, possesses 5' flap endonuclease (FEN), 5' exonuclease (EXO), and gap-endonuclease (GEN) activities. The multiple, structure-specific nuclease activities of FEN1 allow it to process different intermediate DNA structures during DNA replication and repair. We previously identified a group of FEN1 mutations and single nucleotide polymorphisms that impair FEN1's EXO and GEN activities in human cancer patients. We also established a mouse model carrying the E160D FEN1 mutation, which mimics the mutations seen in humans. FEN1 mutant mice developed spontaneous lung cancer at high frequency at their late life stages. An important unanswered question is whether individuals carrying such FEN1 mutation are more susceptible to tobacco smoke and have an earlier onset of lung cancer. Here, we report our study on E160D mutant mice exposed to benzo[α]pyrene (B[α]P), a major DNA damaging compound found in tobacco smoke. We demonstrate that FEN1 employs its GEN activity to cleave DNA bubble substrates with BP-induced lesions, but the E160D FEN1 mutation abolishes such activity. As a consequence, Mouse cells carrying the E160D mutation display defects in the repair of B[α]P adducts and accumulate DNA double-stranded breaks and chromosomal aberrations upon treatments with B[α]P. Furthermore, more E160D mice than WT mice have an early onset of B[α]P-induced lung adenocarcinoma. All together, our current study suggests that individuals carrying the GEN-deficient FEN1 mutations have high risk to develop lung cancer upon exposure to B[α]P-containing agents such as tobacco smoke.  相似文献   

13.
DNA polymerase beta (pol beta) and flap endonuclease 1 (FEN1) are key players in pol beta-mediated long-patch base excision repair (LP-BER). It was proposed that this type of LP-BER is accomplished through FEN1 removal of a 2- to 11-nucleotide flap created by pol beta strand displacement DNA synthesis. To understand how these enzymes might cooperate during LP-BER, we characterized purified human pol beta DNA synthesis by utilizing various BER intermediates, including single-nucleotide-gapped DNA, nicked DNA, and nicked DNA with various lengths of flaps all with a 5'-terminal tetrahydrofuran (THF) residue. We observed that nicked DNA and nicked-THF flap DNA were poor substrates for pol beta-mediated DNA synthesis; yet, DNA synthesis was strongly stimulated by purified human FEN1. FEN1 did not improve pol beta substrate binding. FEN1 cleavage activity was required for the stimulation, suggesting that FEN1 removed a barrier to pol beta DNA synthesis. In addition, FEN1 cleavage on both nicked and nicked-THF flap DNA resulted in a one-nucleotide gapped DNA molecule that was an ideal substrate for pol beta. This study demonstrates that pol beta cooperates with FEN1 to remove DNA damage via a "Hit and Run" mechanism, involving alternating short gap production by FEN1 and gap filling by pol beta, rather than through coordinated formation and removal of a strand-displaced flap.  相似文献   

14.
Gomes XV  Burgers PM 《The EMBO journal》2000,19(14):3811-3821
The FEN1 nuclease functions during Okazaki fragment maturation in the eukaryotic cell. Like many other proliferating cell nuclear antigen (PCNA)-binding proteins, FEN1 interacts with the interdomain connector loop (IDCL) of PCNA, and PCNA greatly stimulates FEN1 activity. A yeast IDCL mutant pcna-79 (IL126,128AA) failed to interact with FEN-1, but, surprisingly, pcna-79 was still very active in stimulating FEN1 activity. In contrast, a C-terminal mutant pcna-90 (PK252,253AA) showed wild-type binding to FEN1 in solution, but poorly stimulated FEN1 activity. When PCNA was loaded onto a DNA substrate coupled to magnetic beads, it stabilized retention of FEN1 on the DNA. In this DNA-dependent binding assay, pcna-79 also stabilized retention of FEN1, but pcna-90 was inactive. Therefore, in the absence of DNA, FEN1 interacts with PCNA mainly through the IDCL. However, when PCNA encircles the DNA, the C-terminal domain of PCNA rather than its IDCL is important for binding FEN1. An FF-->GA mutation in the PCNA-interaction domain of FEN1 severely decreased both modes of interaction with PCNA and resulted in replication and repair defects in vivo.  相似文献   

15.
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5′-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5′-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences.  相似文献   

16.
Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.  相似文献   

17.
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.  相似文献   

18.
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5′ ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.  相似文献   

19.
20.
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号