首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bcl-2 family member Bad is a pro-apoptotic protein, and phosphorylation of Bad by cytokines and growth factors promotes cell survival in many cell types. Induction of apoptosis by UV radiation is well documented. However, little is known about UV activation of cell survival pathways. Here, we demonstrate that UVB induces Bad phosphorylation at serine 112 in JNK1, RSK2, and MSK1-dependent pathways. Inhibition of mitogen-activated protein (MAP) kinases including ERKs, JNKs, and p38 kinase by the use of their respective dominant negative mutant or a specific inhibitor for MEK1 or p38 kinase, PD98059 or SB202190, resulted in abrogation of UVB-induced phosphorylation of Bad at serine 112. Incubation of active MAP kinase members with Bad protein showed serine 112 phosphorylation of Bad by JNK1 only. However, activated RSK2 and MSK1, downstream kinases of ERKs and p38 kinase, respectively, also phosphorylated Bad at serine 112 in vitro. Cells from a Coffin-Lowry syndrome patient (deficient in RSK2) or expressing an N-terminal or C-terminal kinase-dead mutant of MSK1 were defective for UVB-induced serine 112 phosphorylation of Bad. Furthermore, MAP kinase pathway-dependent serine 112 phosphorylation was shown to be required for dissociation of Bad from Bcl-X(L). These data illustrated that UVB-induced phosphorylation of Bad at serine 112 was mediated through MAP kinase signaling pathways in which JNK1, RSK2, and MSK1 served as direct mediators.  相似文献   

2.
N-cadherin is a major adhesion molecule involved in the development and plasticity of the nervous system. N-cadherin-mediated cell adhesion regulates neuroepithelial cell polarity, neuronal precursor migration, growth cone migration and synaptic plasticity. In vitro, it has been involved in signaling events regulating processes such as cell mobility, proliferation and differentiation. N-cadherin has also been implicated in adhesion-dependent protection against apoptosis in non-neuronal cells. In this study, we investigated if the engagement of N-cadherin participates to the control of neuronal cells survival/death balance. We observed that plating either primary mouse spinal cord neurons or primary rat hippocampal neurons on N-cadherin recombinant substrate greatly enhances their survival compared to non-specific adhesion on poly-L-lysine. We show that N-cadherin engagement, in the absence of other survival factors (cell-matrix interactions and serum), protects GT1-7 neuronal cells against apoptosis. Using this cell line, we then searched for the signaling pathways involved in the survival effect of N-cadherin engagement. The PI3-kinase/Akt survival pathway and its downstream effector Bad are not involved, as no phosphorylation of Akt or Bad proteins in response to N-cadherin engagement was observed. In contrast, N-cadherin engagement activated the Erk1/2 MAP kinase pathway. Moreover, N-cadherin ligation mediated a 2-fold decrease in the level of the pro-apoptotic protein Bim-EL whereas the level of the anti-apoptotic protein Bcl-2 was unchanged. Inhibition of Mek1/2 kinases with U0126, and the resulting inhibition of Erk1/2 phosphorylation, induced the increase of both the level of Bim-EL and apoptosis of cells seeded on the N-cadherin substrate, suggesting that Erk phosphorylation is necessary for cell survival. Finally, the overexpression of a phosphorylation defective form of Bim-EL prevented N-cadherin-engagement induced cell survival. In conclusion, our results show that N-cadherin engagement mediates neuronal cell survival by enhancing the MAP kinase pathway and down-regulating the pro-apoptotic protein Bim-EL.  相似文献   

3.
Activated extracellular-signal-regulated kinase (Erk) phosphorylates and activates downstream kinases including ribosomal S6 kinase 2 (Rsk2/RPS6KA3) and mitogen- and stress-activated kinase 1 (Msk1, RPS6KA5). Rsk2 plays an important role in neuronal plasticity, as patients with Coffin-Lowry syndrome, where Rsk2 is dysfunctional, have impaired cognitive function. However, the relative role of neuronal Rsk2 and Msk1 in activating proteins downstream of Erk is unclear. In PC12 cells and in cortical neurones, the calcium ionophore A23187-induced phosphorylation of Erk, Msk1, Rsk2 and also the Bcl-2-associated death protein (Bad), which protects against neurotoxicity. Specific knockdown of Msk1 with small interfering RNA reduced the ability of A23187 to induce Bad phosphorylation in both PC12 cells and cortical neurones. Conversely, specific knockdown of Rsk2 potentiated Bad phosphorylation following A23187 treatment, and also elevated Erk phosphorylation in both cell types. This indicates that Msk1 rather than Rsk2 mediates neuronal Bad phosphorylation following Ca(2+) influx and implicates Rsk2 in a negative-feedback regulation of Erk activity.  相似文献   

4.
Rsk kinases play important roles in several cellular processes such as proliferation, metabolism, and migration. Until recently, Rsk activation was thought to be exclusively initiated by Erk1/2, but in dendritic cells (DC) Rsk is also activated by p38 mitogen-activated protein (MAP) kinase via its downstream substrates, MK2/3. How and why this noncanonical configuration of the MAP kinase pathway is adopted by these key immune cells are not known. We demonstrate that the Erk1/2-activated C-terminal kinase domain of Rsk is dispensable for p38-MK2/3 activation and show that compared with fibroblasts, a greater fraction of p38 and MK2/3 is located in the cytosol of DC prior to stimulation, suggesting a partial explanation for the operation of the noncanonical pathway of Rsk activation in these cells. p38/MK2/3-activated Rsk phosphorylated downstream targets and is physiologically important because in plasmacytoid DC (pDC) stimulated with Toll-like receptor 7 (TLR7) agonists, Erk1/2 activation is very weak relative to p38. As a result, Rsk activation is entirely p38 dependent. We show that this unusual configuration of MAP kinase signaling contributes substantially to production of type I interferons, a hallmark of pDC activation.  相似文献   

5.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   

6.
The Bcr-Abl tyrosine kinase constitutively activates cytokine signal transduction pathways that stimulate growth and prevent apoptosis in hematopoietic cells. The antiapoptotic action of interleukin-3 (IL-3) has been linked to a signaling pathway which inactivates the proapoptotic protein Bad by phosphorylation through kinases such as Akt and Raf. Here we report also that expression of Bcr-Abl leads to phosphorylation of Bad in hematopoietic cells. Bad phosphorylation induced by Bcr-Abl is kinase dependent, requires phosphatidylinositol 3-kinase (PI3-kinase), and mitochondrial targeting of Raf, and occurs independently of Erk. The ability of Bcr-Abl to confer cytokine-independent survival to hematopoietic cells was compromised by inhibitors of PI3-kinase, as well as by a dominant negative form of Raf targeted to the mitochondria. Furthermore, when the capacity of Bcr-Abl to phosphorylate Bad was completely blocked by dominant negative Raf, a subpopulation of cells remained viable, providing evidence for Bad-independent survival pathways. This alternative survival pathway remained PI3-kinase dependent. Finally, Bcr-Abl, but not IL-3, inhibited the proapoptotic activity of overexpressed Bad. We conclude that the antiapoptotic function of Bcr-Abl is mediated through pathways involving PI3-kinase and Raf and that survival can occur in the absence of Bad phosphorylation.  相似文献   

7.
The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway.  相似文献   

8.
Here we report a previously unknown self repair mechanism during extremely early stages of rat Parkinsonism. Two important cell survival signaling cascades, Phosphatidylinositol-3 kinases (PI3K)/Akt pathway and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, could be responsible for this potential endogenous rescue system. In the 6-hydroxydopamine-lesioned rat, the phosphorylated p44/42 MAPK and its downstream target, the phosphorylated Bad at Ser 112, were up-regulated at post-lesion day 3 and lasted for a couple of weeks. Although the change in the phosphorylated Akt kinase was negligible throughout the studied period, its downstream target, the phosphorylated Bad at 136, was increased from post-lesion day 3 to post-lesion day 14. In the mean time, nestin-positive reactive astrocytes with low levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) appeared at post-lesion day 3 in 6-hydroxydopamine-lesioned rat. BDNF was expressed in both striatum and substantia nigra whereas GDNF was displayed in striatum only. At post-lesion day 14, nestin, BDNF and GDNF expressions were diminished. These neurotrophic factors were believed to initiate the above anti-apoptotic signal transduction cascades as we could see that their expression patterns were similar. The data strongly suggest that there is an endogenous repair effort by evoking the cell survival signaling and possibly via the releases of BDNF and GDNF from nestin-immunoreactive reactive astrocytes. ERK/MAPK pathway was proposed to be the key endogenous neuroprotective mechanisms, particularly in early stages of rat Parkinsonism. However, the self repair effort is only functional within an extremely short time window immediately after onset.  相似文献   

9.
Activation of glucagon-like peptide-2 receptor (GLP-2R) signaling promotes expansion of the mucosal epithelium indirectly via activation of growth and anti-apoptotic pathways; however, the cellular mechanisms coupling direct GLP-2R activation to cell survival remain poorly understood. We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002. The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity. GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner. GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity. These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.  相似文献   

10.
Recent evidence indicates that testosterone is neuroprotective, however, the underlying mechanism(s) remains to be elucidated. In this study, we investigated the hypothesis that androgens induce mitogen-activated protein kinase (MAPK) signaling in neurons, which subsequently drives neuroprotection. We observed that testosterone and its non-aromatizable metabolite dihydrotestosterone (DHT) rapidly and transiently activate MAPK in cultured hippocampal neurons, as evidenced by phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2. Importantly, pharmacological suppression of MAPK/ERK signaling blocked androgen-mediated neuroprotection against beta-amyloid toxicity. Androgen activation of MAPK/ERK and neuroprotection also was observed in PC12 cells stably transfected with androgen receptor (AR), but in neither wild-type nor empty vector-transfected PC12 cells. Downstream of ERK phosphorylation, we observed that DHT sequentially increases p90 kDa ribosomal S6 kinase (Rsk) phosphorylation and phosphorylation-dependent inactivation of Bcl-2-associated death protein (Bad). Prevention of androgen-induced phosphorylation of Rsk and Bad blocked androgen neuroprotection. These findings demonstrate AR-dependent androgen activation of MAPK/ERK signaling in neurons, and specifically identify a neuroprotective pathway involving downstream activation of Rsk and inactivation of Bad. Elucidation of androgen-mediated neural signaling cascades will provide important insights into the mechanisms of androgen action in brain, and may present a framework for therapeutic intervention of age-related neurodegenerative disorders.  相似文献   

11.
Activation of phosphoinositide-3 kinases (PI3Ks), their downstream target protein kinase B (PKB), and phosphorylation of Bad have all been implicated in survival signaling in many systems. However, it is not known whether these events are sufficient or necessary to universally prevent apoptosis. To address this issue, we have used three different factor-dependent hemopoietic cell lines, MC/9, BaF/3, and factor-dependent (FD)-6, which respond to a range of cytokines, to investigate the relationship between PI3K, PKB, and Bad activity with survival. The cytokines IL-3, IL-4, stem cell factor (SCF), GM-CSF, and insulin all induced the rapid and transient activation of PKB in responsive cell lines. In all cases, cytokine-induced PKB activation was sensitive to inhibition by the PI3K inhibitor, LY294002. However, dual phosphorylation of the proapoptotic protein Bad was found not to correlate with PKB activation. In addition, we observed cell-type-specific differences in the ability of the same cytokine to induce Bad phosphorylation. Whereas IL-4 induced low levels of dual phosphorylation of Bad in FD-6, it was unable to in MC/9 or BaF/3. Insulin, which was the most potent inducer of PKB in FD-6, induced barely detectable Bad phosphorylation. In addition, the ability of a particular cytokine to induce PKB activity did not correlate with its ability to promote cell survival and/or proliferation. These data demonstrate that, in hemopoietic cells, activation of PKB does not automatically confer a survival signal or result in phosphorylation of Bad, implying that other survival pathways must be involved.  相似文献   

12.
13.
The TAO (for thousand-and-one amino acids) protein kinases activate p38 mitogen-activated protein (MAP) kinase cascades in vitro and in cells by phosphorylating the MAP/ERK kinases (MEKs) 3 and 6. We found that TAO2 activity was increased by carbachol and that carbachol and the heterotrimeric G protein Galphao could activate p38 in 293 cells. Using dominant interfering kinase mutants, we found that MEKs 3 and 6 and TAOs were required for p38 activation by carbachol or the constitutively active mutant GalphaoQ205L. To explore events downstream of TAOs, the effects of TAO2 on ternary complex factors (TCFs) were investigated. Transfection studies demonstrated that TAO2 stimulates phosphorylation of the TCF Elk1 on the major activating site, Ser383, and that TAO2 stimulates transactivation of Elk1 and the related TCF, Sap1. Reporter activity was reduced by the p38-selective inhibitor SB203580. Taken together, these studies suggest that TAO protein kinases relay signals from carbachol through heterotrimeric G proteins to the p38 MAP kinase, which then activates TCFs in the nucleus.  相似文献   

14.
Environmental stressors have been recently shown to activate intracellular mitogen-activated protein (MAP) kinases, such as p38 MAP kinase, leading to changes in cellular functioning. However, little is known about the downstream elements in these signaling cascades. In this study, we show that caveolin-1 is phosphorylated on tyrosine 14 in NIH 3T3 cells after stimulation with a variety of cellular stressors (i.e. high osmolarity, H2O2, and UV light). To detect this phosphorylation event, we employed a phosphospecific monoclonal antibody probe that recognizes only tyrosine 14-phosphorylated caveolin-1. Since p38 MAP kinase and c-Src have been previously implicated in the stress response, we next assessed their role in the tyrosine phosphorylation of caveolin-1. Interestingly, we show that the p38 inhibitor (SB203580) and a dominant-negative mutant of c-Src (SRC-RF) both block the stress-induced tyrosine phosphorylation of caveolin-1 (Tyr(P)(14)). In contrast, inhibition of the p42/44 MAP kinase cascade did not affect the tyrosine phosphorylation of caveolin-1. These results indicate that extracellular stressors can induce caveolin-1 tyrosine phosphorylation through the activation of well established upstream elements, such as p38 MAP kinase and c-Src kinase. However, heat shock did not promote the tyrosine phosphorylation of caveolin-1 and did not activate p38 MAP kinase. Finally, we show that after hyperosmotic shock, tyrosine-phosphorylated caveolin-1 is localized near focal adhesions, the major sites of tyrosine kinase signaling. In accordance with this localization, disruption of the actin cytoskeleton dramatically potentiates the tyrosine phosphorylation of caveolin-1. Taken together, our results clearly define a novel signaling pathway, involving p38 MAP kinase activation and caveolin-1 (Tyr(P)(14)). Thus, tyrosine phosphorylation of caveolin-1 may represent an important downstream element in the signal transduction cascades activated by cellular stress.  相似文献   

15.
Cellular growth control requires the coordination and integration of multiple signaling pathways which are likely to be activated concomitantly. Mitogenic signaling initiated by thyrotropin (TSH) in thyroid cells seems to require two distinct signaling pathways, a cyclic AMP (cAMP)-dependent signaling pathway and a Ras-dependent pathway. This is a paradox, since activated cAMP-dependent protein kinase disrupts Ras-dependent signaling induced by growth factors such as epidermal growth factor and platelet-derived growth factor. This inhibition may occur by preventing Raf-1 protein kinase from binding to Ras, an event thought to be necessary for the activation of Raf-1 and the subsequent activation of the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinases (MEKs) and MAP kinase (MAPK)/ERKs. Here we report that serum-stimulated hyperphosphorylation of Raf-1 was inhibited by TSH treatment of Wistar rat thyroid cells, indicating that in this cell line, as in other cell types, increases in intracellular cAMP levels inhibit activation of downstream kinases targeted by Ras. Ras-stimulated expression of genes containing AP-1 promoter elements was similarly inhibited by TSH. On the other hand, stimulation of thyroid cells with TSH resulted in stimulation of DNA synthesis which was Ras dependent but both Raf-1 and MEK independent. We also show that Ras-stimulated DNA synthesis required the use of this kinase cascade in untreated quiescent cells but not in TSH-treated cells. These data suggest that in TSH-treated thyroid cells, Ras might be able to signal through effectors other than the well-studied cytoplasmic kinase cascade.  相似文献   

16.
17.
This study was designed to investigate Bad phosphorylation at several of its key regulatory Ser residues in cytokine-dependent hemopoietic cells. These studies were initiated in light of numerous studies that have reported a key role for phosphorylated Bad in preventing apoptosis. One key question is whether the survival signaling effect of the PI 3-kinase pathway is mediated by PKB phosphorylation of Bad. We confirm previous reports that if Bad is overexpressed or if active PKB is overexpressed, then the increased phosphorylation of Bad at Ser136 is apparent. However, we were unable to detect phosphorylation of endogenous Bad at Ser136 in the MC/9 mast cell line or in murine bone marrow-derived macrophages. On the other hand, phosphorylation of Bad at Ser112 and Ser155 was observed in response to IL-3 or GM-CSF, which activate the MEK/erk pathway, but not with IL-4, which activates the PI 3-kinase, but not the MEK/erk pathway, and also promotes cell survival. In contrast to previous reports, we found that ceramide had no effect on the phosphorylation status of Bad. In summary, our results suggest that Bad phosphorylation at any of the three major sites is not a required event for cytokine-dependent cell survival, and in particular, the activation of PI 3-kinase/PKB pathway can be dissociated from phosphorylation of Bad at Ser136.Supported by grants from the Cancer Research Society Inc. and the Heart and Stroke Foundation of Canada.  相似文献   

18.
Insulin-like growth factor (IGF)-I receptor activation leads to enhanced proliferation and cell survival via the MAP kinase and phosphatidylinositol 3-kinase-signaling pathways. Upon stimulation by IGF-I, the Hdm2 oncoprotein is phosphorylated by AKT, leading to its rapid nuclear translocation and subsequent inhibition of p53. We now show that IGF-I stimulation regulates the nuclear export of Hdm2 and p53 via the MAP kinase pathway. Inhibition of p38 MAPK or MEK via pharmacological means or expression of dominant negative proteins inhibited the cytoplasmic accumulation of Hdm2 and increased Hdm2 and p53 protein levels, whereas constitutively active p90Rsk promoted the nuclear export of Hdm2. Expression of constitutively active p90Rsk with E1A, oncogenic H-Ras, and hTERT resulted in the anchorage-independent growth of normal human fibroblasts. Our findings link p90Rsk-mediated modulation of Hdm2 nuclear to cytoplasmic shuttling with the diminished ability of p53 to regulate cell cycle checkpoints that ultimately leads to transformation.  相似文献   

19.
The 90-kDa ribosomal S6 kinases, the p90 Rsks, are a family of intracellular serine/threonine protein kinases distinguished by two distinct kinase domains. Rsks are activated downstream of the ERK1 (p44) and ERK2 (p42) mitogen-activated protein (MAP) kinases in diverse biological contexts, including progression through meiotic and mitotic M phases in Xenopus oocytes and cycling Xenopus egg extracts, and are critical for the M phase functions of Xenopus p42 MAPK. Here we report the cloning and biochemical characterization of Xenopus Rsk2. Xenopus Rsk1 and Rsk2 are specifically recognized by commercially available RSK1 and RSK2 antisera on immunoblots, but both Rsk1 and Rsk2 are immunoprecipitated by RSK1, RSK2, and RSK3 sera. Rsk2 is about 20-fold more abundant than the previously described Xenopus Rsk1 protein; their concentrations are approximately 120 and 5 nm, respectively. Rsk2, like Rsk1, forms a heteromeric complex with p42 MAP kinase. This interaction depends on sequences at the extreme C terminus of Rsk2 and can be disrupted by a synthetic peptide derived from the C-terminal 20 amino acids of Rsk2. Finally, we demonstrate that p42 MAP kinase can activate recombinant Rsk2 in vitro to a specific activity comparable to that found in Rsk2 that has been activated maximally in vivo. These findings underscore the importance of the Rsk2 isozyme in the M phase functions of p42 MAP kinase and provide tools for further examining Rsk2 function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号