首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial Uncoupling as a Therapeutic Target Following Neuronal Injury   总被引:4,自引:0,他引:4  
Mitochondrial dysfunction is a prominent feature of excitotoxic insult and mitochondria are known to play a pivotal role in neuronal cell survival and death following injury. Following neuronal injury there is a well-documented increase in cytosolic Ca(2+), reactive oxygen species (ROS) production and oxidative damage. In vitro studies have demonstrated these events are dependent on mitochondrial Ca(2+) cycling and that a reduction in membrane potential is sufficient to reduce excitotoxic cell death. This concept has gained additional support from experiments demonstrating that the overexpression of endogenous mitochondrial uncoupling proteins (UCP), which decrease the mitochondrial membrane potential, decreases cell death following oxidative stress. Our group has demonstrated that upregulation of UCP activity can reduce excitotoxic-mediated ROS production and cell death whereas a reduction in UCP levels increases susceptibility to neuronal injury. These findings raise the possibility that mitochondrial uncoupling could be a potential novel treatment for acute CNS injuries.  相似文献   

2.
Ischemic stroke is caused by acute neuronal degeneration provoked by interruption of cerebral blood flow. Although the mechanisms contributing to ischemic neuronal degeneration are myriad, mitochondrial dysfunction is now recognized as a pivotal event that can lead to either necrotic or apoptotic neuronal death. Lack of suitable 'upstream' targets to prevent loss of mitochondrial homeostasis has, so far, restricted the development of mechanistically based interventions to promote neuronal survival. Here, we show that the uncoupling agent 2,4 dinitrophenol (DNP) reduces infarct volume approximately 40% in a model of focal ischemia-reperfusion injury in the rat brain. The mechanism of protection involves an early decrease in mitochondrial reactive oxygen species formation and calcium uptake leading to improved mitochondrial function and a reduction in the release of cytochrome c into the cytoplasm. The observed effects of DNP were not associated with enhanced cerebral perfusion. These findings indicate that compounds with uncoupling properties may confer neuroprotection through a mechanism involving stabilization of mitochondrial function.  相似文献   

3.
Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.  相似文献   

4.
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

5.
BackgroundReactive oxygen species are grossly produced in the brain after cerebral ischemia and reperfusion causing neuronal cell death. Mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Therefore, limited uncoupling of oxidative phosphorylation could be beneficial for cells exposed to deleterious oxidative stress-associated conditions by preventing excessive generation of reactive oxygen species.MethodsProtonophoric and uncoupling activities of different peptides were measured using pyranine-loaded liposomes and isolated mitochondria. To evaluate the effect of glutamate-substituted analog of gramicidin A ([Glu1]gA) administration on the brain ischemic damage, we employed the in vitro model of neuronal hypoxia using primary neuronal cell cultures and the in vivo model of cerebral ischemia induced in rats by the middle cerebral artery occlusion.Results[Glu1]gA was the most effective in proton-transferring activity among several N-terminally substituted analogs of gramicidin A tested in liposomes and rat brain and liver mitochondria. The peptides were found to be protective against ischemia-induced neuronal cell death and they lowered mitochondrial membrane potential in cultured neurons and diminished reactive oxygen species production in isolated brain mitochondria. The intranasal administration of [Glu1]gA remarkably diminished the infarct size indicated in MR-images of a brain at day 1 after the middle cerebral artery occlusion. In [Glu1]gA-treated rats, the ischemia-induced brain swelling and behavioral dysfunction were significantly suppressed.ConclusionsThe glutamate-substituted analogs of gramicidin A displaying protonophoric and uncoupling activities protect neural cells and the brain from the injury caused by ischemia/reperfusion.General significance[Glu1]gA may be potentially used as a therapeutic agent to prevent neuron damage after stroke.  相似文献   

6.
The effects of fasting and refeeding on the concentration of uncoupling protein in brown adipose tissue mitochondria have been investigated in mice. Fasting mice for 48 h led to a large decrease in the total cytochrome oxidase activity of the interscapular brown fat pad. Mitochondrial GDP binding and the specific mitochondrial concentration of uncoupling protein also fell on fasting. After 24 h refeeding both GDP binding and the mitochondrial concentration of uncoupling protein were normalized, but there was no alteration in the total tissue cytochrome oxidase activity. Fasting appears to induce a selective loss of uncoupling protein from brown adipose tissue mitochondria, which is rapidly reversible on refeeding.  相似文献   

7.
In acute neuronal insult events, such as stroke, traumatic brain injury, and spinal cord injury, pathological processes of secondary neuronal injury play a key role in the severity of insult and clinical prognosis. Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is regarded as the third gasotransmitter and endogenous neuromodulator and plays multiple roles in the central nervous system under physiological and pathological states, especially in secondary neuronal injury. The endogenous level of H2S in the brain is significantly higher than that in peripheral tissues, and is mainly formed by cystathionine β-synthase (CBS) in astrocytes and released in response to neuronal excitation. The mechanism of secondary neuronal injury exacerbating the damage caused by the initial insult includes microcirculation failure, glutamate-mediated excitotoxicity, oxidative stress, inflammatory responses, neuronal apoptosis and calcium overload. H2S dilates cerebral vessels by activating smooth muscle cell plasma membrane ATP-sensitive K channels (KATP channels). This modification occurs on specific cysteine residues of the KATP channel proteins which are S-sulfhydrated. H2S counteracts glutamate-mediated excitotoxicity by inducing astrocytes to intake more glutamate from the extracellular space and thus increasing glutathione in neurons. In addition, H2S protects neurons from secondary neuronal injury by functioning as an anti-oxidant, anti-inflammatory and anti-apoptotic mediator. However, there are still some reports suggest that H2S elevates neuronal Ca2+ concentration and may contribute to the formation of calcium overload in secondary neuronal injury. H2S also elicits calcium waves in primary cultures of astrocytes and may mediate signals between neurons and glia. Consequently, further exploration of the molecular mechanisms of H2S in secondary neuronal injury will provide important insights into its potential therapeutic uses for the treatment of acute neuronal insult events.  相似文献   

8.
Pancreatitis is an increasingly common disease that carries a significant mortality and which lacks specific therapy. Pathological calcium signalling is an important contributor to the initiating cell injury, caused by or acting through mitochondrial inhibition. A principal effect of disordered cell signalling and impaired mitochondrial function is cell death, either by apoptosis that is primarily protective, or by necrosis that is deleterious, both locally and systemically. Mitochondrial calcium overload is particularly important in necrotic injury, which may include damage mediated by the mitochondrial permeability transition pore. The role of reactive oxygen species remains controversial. Present understanding of the part played by disordered pancreatic acinar calcium signalling and mitochondrial inhibition offers several new potential therapeutic targets.  相似文献   

9.
Mitochondrial ATP synthesis is driven by a membrane potential across the inner mitochondrial membrane; this potential is generated by the proton-pumping electron transport chain. A balance between proton pumping and dissipation of the proton gradient by ATP-synthase is critical to avoid formation of excessive reactive oxygen species due to overreduction of the electron transport chain. Here, we report a mechanism that regulates bioenergetic balance in individual mitochondria: a transient partial depolarization of the inner membrane. Single mitochondria in living Arabidopsis thaliana root cells undergo sporadic rapid cycles of partial dissipation and restoration of membrane potential, as observed by real-time monitoring of the fluorescence of the lipophilic cationic dye tetramethyl rhodamine methyl ester. Pulsing is induced in tissues challenged by high temperature, H(2)O(2), or cadmium. Pulses were coincident with a pronounced transient alkalinization of the matrix and are therefore not caused by uncoupling protein or by the opening of a nonspecific channel, which would lead to matrix acidification. Instead, a pulse is the result of Ca(2+) influx, which was observed coincident with pulsing; moreover, inhibitors of calcium transport reduced pulsing. We propose a role for pulsing as a transient uncoupling mechanism to counteract mitochondrial dysfunction and reactive oxygen species production.  相似文献   

10.
Parkinson's disease (PD) is characterized by accumulation of α-synuclein (α-syn) and degeneration of neuronal populations in cortical and subcortical regions. Mitochondrial dysfunction has been considered a potential unifying factor in the pathogenesis of the disease. Mutations in genes linked to familial forms of PD, including SNCA encoding α-syn and Pten-induced putative kinase 1 ( PINK1 ), have been shown to disrupt mitochondrial activity. We investigated the mechanisms through which mutant Pink1 might disrupt mitochondrial function in neuronal cells with α-syn accumulation. For this purpose, a neuronal cell model of PD was infected with virally-delivered Pink1, and was analyzed for cell survival, mitochondrial activity and calcium flux. Mitochondrial morphology was analyzed by confocal and electron microscopy. These studies showed that mutant (W437X) but not wildtype Pink1 exacerbated the alterations in mitochondrial function promoted by mutant (A53T) α-syn. This effect was associated with increased intracellular calcium levels. Co-expression of both mutant Pink1 and α-syn led to alterations in mitochondrial structure and neurite outgrowth that were partially ameliorated by treatment with cyclosporine A, and completely restored by treatment with the mitochondrial calcium influx blocker Ruthenium Red, but not with other cellular calcium flux blockers. Our data suggest a role for mitochondrial calcium influx in the mechanisms of mitochondrial and neuronal dysfunction in PD. Moreover, these studies support an important function for Pink1 in regulating mitochondrial activity under stress conditions.  相似文献   

11.
Mitochondrial uncoupling protein 2 (UCP2) plays an important role in regulating energy metabolism. We previously reported that UCP2 expression in steatotic livers is increased which leads to diminished hepatic ATP stores and renders steatotic hepatocytes vulnerable to ischemic damage. In this study, reagents that inhibit the production of ATP were used to mimic an ischemic state in the liver in order to investigate the effects of decreased intracellular ATP levels on UCP2 expression in a murine hepatocyte cell line (HEP6-16). Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an oxidative phosphorylation uncoupler, was found to decrease intracellular ATP levels in a dose- and time-dependent manner. Relatively high concentrations of FCCP from 8 to 80 microM were required to reduce the intracellular concentration of ATP. The inhibitory effect of FCCP on intracellular ATP was significantly potentiated by 2-deoxy-D-glucose, an inhibitor of glycolysis that when administered alone had no negative effect on cellular ATP levels in mouse hepatocytes. Decreased intracellular ATP levels were accompanied by lower UCP2 mRNA expression. Upon removal of FCCP and/or 2-deoxy-D-glucose and reculture with normal medium, ATP and UCP2 mRNA levels returned to normal within a few hours. Mitochondrial membrane potential in HEP6-16 cells was dissipated by 80 microM FCCP but not 8 microM FCCP, suggesting that the downregulation of UCP2 expression by FCCP was not related to mitochondrial potential changes. Consequently, the in vitro manipulation of ATP stores is consistent with the in vivo observations associated with ischemia/reperfusion injury.  相似文献   

12.
Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.  相似文献   

13.
This review summarizes recent information on the role of calcium in the process of neuronal injury with special attention to the role of calcium stores in the endoplasmic reticulum (ER). Experimental results present evidence that ER is the site of complex processes such as calcium storage, synthesis and folding of proteins and cell response to stress. ER function is impaired in many acute and chronic diseases of the brain which in turn induce calcium store depletion and conserved stress responses. Understanding the mechanisms leading to ER dysfunction may lead to recognition of neuronal protection strategies.  相似文献   

14.
Mitochondrial respiratory function, assessed from the rate of oxygen uptake by homogenates of rat brain subregions, was examined after 30 min of forebrain ischemia and at recirculation periods of up to 48 h. Ischemia-sensitive regions which develop extensive neuronal loss during the recirculation period (dorsal-lateral striatum, CA1 hippocampus) were compared with ischemia-resistant areas (paramedian neocortex, CA3 plus CA4 hippocampus). All areas showed reductions (to 53-69% of control) during ischemia for oxygen uptake rates determined in the presence of ADP or an uncoupling agent, which then recovered within 1 h of cerebral recirculation. In the ischemia-resistant regions, oxygen uptake rates remained similar to control values for at least 48 h of recirculation. After 3 h of recirculation, a significant decrease in respiratory activity (measured in the presence of ADP or uncoupling agent) was observed in the dorsal-lateral striatum which progressed to reductions of greater than 65% of the initial activity by 24 h. In the CA1 hippocampus, oxygen uptake rates were unchanged for 24 h, but were significantly reduced (by 30% in the presence of uncoupling agent) at 48 h. These alterations parallel the development of histological evidence of ischemic cell change determined previously and apparently precede the appearance of differential changes between sensitive and resistant regions in the content of high-energy phosphate compounds. These results suggest that alterations of mitochondrial activity are a relatively early change in the development of ischemic cell death and provide a sensitive biochemical marker for this process.  相似文献   

15.
The integrity of mitochondrial function is fundamental to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. In this review, I consider recent developments in our knowledge of basic aspects of mitochondrial biology as an essential step in developing our understanding of the contributions of mitochondria to disease. The identification of novel mechanisms that govern mitochondrial biogenesis and replication, and the delicately poised signalling pathways that coordinate the mitochondrial and nuclear genomes are discussed. As fluorescence imaging has made the study of mitochondrial function within cells accessible, the application of that technology to the exploration of mitochondrial bioenergetics is reviewed. Mitochondrial calcium uptake plays a major role in influencing cell signalling and in the regulation of mitochondrial function, while excessive mitochondrial calcium accumulation has been extensively implicated in disease. Mitochondria are major producers of free radical species, possibly also of nitric oxide, and are also major targets of oxidative damage. Mechanisms of mitochondrial radical generation, targets of oxidative injury and the potential role of uncoupling proteins as regulators of radical generation are discussed. The role of mitochondria in apoptotic and necrotic cell death is seminal and is briefly reviewed. This background leads to a discussion of ways in which these processes combine to cause illness in the neurodegenerative diseases and in cardiac reperfusion injury. The demands of mitochondria and their complex integration into cell biology extends far beyond the provision of ATP, prompting a radical change in our perception of mitochondria and placing these organelles centre stage in many aspects of cell biology and medicine.  相似文献   

16.
Post-mitotic neurons and heart muscle cells undergo apoptotic cell death in a variety of acute and chronic degenerative diseases. The intrinsic pathway of apoptosis involves the permeabilization of mitochondrial membranes, which leads to the release of protease and nuclease activators, and to bioenergetic failure. Mitochondrial permeabilization is induced by a variety of pathologically relevant second messengers, including reactive oxygen species, calcium, stress kinases and pro-apoptotic members of the Bcl-2 family. Several pharmacological agents act on mitochondria to prevent the permeabilization of their membranes, thereby inhibiting apoptosis. Such agents include inhibitors of the permeability transition pore complex (in particular ligands of cyclophilin D), openers of mitochondrial ATP-sensitive or Ca(2+)-activated K(+) channels, and proteins from the Bcl-2 family engineered to cross the plasma membrane. In addition, manipulations that modulate the expression or activity of mitochondrial uncoupling proteins can prevent the death of post-mitotic cells. Such agents hold promise for use in clinical neuroprotection and cardioprotection.  相似文献   

17.
Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.  相似文献   

18.
《BBA》2020,1861(8):148209
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.  相似文献   

19.
Outside the nervous system, members of the mitochondrial uncoupling protein (UCP) family have been proposed to contribute to control of body temperature and energy metabolism, and regulation of mitochondrial production of reactive oxygen species (ROS). However, the function of brain mitochondrial carrier protein 1 (BMCP1), which is highly expressed in brain, remains to be determined. To study BMCP1 expression and function in the nervous system, a high-affinity antibody to BMCP1 was generated and used to analyze tissue expression of BMCP1 protein in mouse. BMCP1 protein was highly expressed in heart and kidney, but not liver or lung. In the nervous system, BMCP1 was present in cortex, basal ganglia, substantia nigra, cerebellum, and spinal cord. Both BMCP1 mRNA and protein expression was almost exclusively neuronal. To study the effect of BMCP1 expression on mitochondrial function, neuronal (GT1-1) cell lines with stable overexpression of BMCP1 were generated. Transfected cells had higher State 4 respiration and lower mitochondrial membrane potential (psi(m)), consistent with greater mitochondrial uncoupling. BMCP1 expression also decreased mitochondrial production of ROS. These data suggest that BMCP1 can modify mitochondrial respiratory efficiency and mitochondrial oxidant production, and raise the possibility that BMCP1 might alter the vulnerability of brain to both acute injury and to neurodegenerative conditions.  相似文献   

20.
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号