首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, it has been shown that the magnetic data for Chromatium ferricytochrome c' at pH 7 are consistent with quantum mechanically (as distinguished from thermally) mixed mid-spin (S = 3/2) and high-spin (S = 5/2) heme. Visible absorption spectra of the protein measured at 77 degrees K and 293 degrees K, pH 7, show peaks at 400, 490, and 632 nm. The observation of a 630 nm band in quantum mixed-spin heme spectra, and the spin state-dependence of the band intensity, are discussed in the context of the iron-ligand structure for quantum mixed-spin heme inferred from magnetic data.  相似文献   

2.
A large family of class III plant peroxidases   总被引:30,自引:0,他引:30  
Class III plant peroxidase (POX), a plant-specific oxidoreductase, is one of the many types of peroxidases that are widely distributed in animals, plants and microorganisms. POXs exist as isoenzymes in individual plant species, and each isoenzyme has variable amino acid sequences and shows diverse expression profiles, suggesting their involvement in various physiological processes. Indeed, studies have provided evidence that POXs participate in lignification, suberization, auxin catabolism, wound healing and defense against pathogen infection. Little, however, is known about the signal transduction for inducing expression of the pox genes. Recent studies have provided information on the regulatory mechanisms of wound- and pathogen-induced expression of some pox genes. These studies suggest that pox genes are induced via different signal transduction pathways from those of other known defense-related genes.  相似文献   

3.
Higher plants possess large multigene families encoding secreted class III peroxidase (Prx) proteins. In barley, two Prx cDNAs encoding HvPrx07 and HvPrx08 have been isolated and characterized to some extent with respect to a resistance-mediating function upon attack by the powdery-mildew fungus Blumeria graminis f.sp. hordei ( Bgh ). Here we present evidence for the tissue-specific accumulation of a new Prx mRNA, HvPrx40 , in Bgh -attacked epidermis of barley ( Hordeum vulgare ). The encoded protein is predicted to be secreted into the apoplastic space of epidermal cells due to the absence of a C-terminal extension, which distinguishes it from other Prx proteins reported to accumulate in leaf epidermis. Transient overexpression of HvPrx40 enhanced the resistance of wheat ( Triticum aestivum ) and barley against Blumeria graminis f.sp. tritici (wheat powdery mildew) and Bgh , respectively. These findings were complemented by transient-induced gene silencing showing hypersusceptibility of barley leaf epidermal cells to Bgh . The local accumulation of oxidized 3,3-diaminobenzidine that reflects H2O2 production at sites of attempted fungal penetration was not reduced in HvPrx40 -silenced cells, suggesting a role of this peroxidase other than the production of reactive oxygen species.  相似文献   

4.
Class III peroxidases are members of a large multigenic family, only detected in the plant kingdom and absent from green algae sensu stricto (chlorophyte algae or Chlorophyta). Their evolution is thought to be related to the emergence of the land plants. However class III peroxidases are present in a lower copy number in some basal Streptophytes (Charapyceae), which predate land colonization. Gene structures are variable among organisms and within species with respect to the number of introns, but their positions are highly conserved. Their high copy number, as well as their conservation could be related to plant complexity and adaptation to increasing stresses. No specific function has been assigned to respective isoforms, but in large multigenic families, particular structure-function relations can be expected. Plant peroxidase sequences contain highly conserved residues and motifs, variable domains surrounded by conserved residues and present a low identity level among their promoter regions, further suggesting the existence of sub-functionalization of the different isoforms.  相似文献   

5.
6.
PeroxiBase: a class III plant peroxidase database   总被引:7,自引:0,他引:7  
Class III plant peroxidases (EC 1.11.1.7), which are encoded by multigenic families in land plants, are involved in several important physiological and developmental processes. Their varied functions are not yet clearly determined, but their characterization will certainly lead to a better understanding of plant growth, differentiation and interaction with the environment, and hence to many exciting applications. Since there is currently no central database for plant peroxidase sequences and many plant sequences are not deposited in the EMBL/GenBank/DDBJ repository or the UniProt KnowledgeBase, this prevents researchers from easily accessing all peroxidase sequences. Furthermore, gene expression data are poorly covered and annotations are inconsistent. In this rapidly moving field, there is a need for continual updating and correction of the peroxidase superfamily in plants. Moreover, consolidating information about peroxidases will allow for comparison of peroxidases between species and thus significantly help making correlations of function, structure or phylogeny. We report a new database (PeroxiBase) accessible through a web server with specific tools dedicated to facilitate query, classification and submission of peroxidase sequences. Recent developments in the field of plant peroxidase are also mentioned.  相似文献   

7.
There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases.  相似文献   

8.
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.  相似文献   

9.
DyP, a unique dye-decolorizing enzyme from the fungus Thanatephorus cucumeris Dec 1, has been classified as a peroxidase but lacks homology to almost all other known plant peroxidases. The primary structure of DyP shows moderate sequence homology to only two known proteins: the peroxide-dependent phenol oxidase, TAP, and the hypothetical peroxidase, cpop21. Here, we show the first crystal structure of DyP and reveal that this protein has a unique tertiary structure with a distal heme region that differs from that of most other peroxidases. DyP lacks an important histidine residue known to assist in the formation of a Fe4+ oxoferryl center and a porphyrin-based cation radical intermediate (compound I) during the action of ubiquitous peroxidases. Instead, our tertiary structural and spectrophotometric analyses of DyP suggest that an aspartic acid and an arginine are involved in the formation of compound I. Sequence analysis reveals that the important aspartic acid and arginine mentioned above and histidine of the heme ligand are conserved among DyP, TAP, and cpop21, and structural and phylogenetic analyses confirmed that these three enzymes do not belong to any other families of peroxidase. These findings, which strongly suggest that DyP is a representative heme peroxidase from a novel family, should facilitate the identification of additional new family members and accelerate the classification of this novel peroxidase family.  相似文献   

10.
The peroxidase from Coprinus macrorhizus is inactivated by phenylhydrazine or sodium azide in the presence of H2O2. Inactivation by phenylhydrazine results in formation of the delta-meso-phenyl and 8-hydroxymethyl derivatives of the prosthetic heme group and covalent binding of the phenyl moiety to the protein but not in the detectable formation of Fe-phenyl- or N-phenylheme adducts. Alkylhydrazines are catalytically oxidized but do not inactivate the enzyme. Catalytic oxidation of sodium azide produces the azidyl radical and results in its addition to the delta-meso position of the prosthetic heme group. Comparison of the heme adducts obtained with C. macrorhizus peroxidase with those generated by horseradish peroxidase shows that the regiochemistry of the addition reactions is the same in both cases. The results suggest that substrates interact primarily or exclusively with the heme edge rather than the ferryl oxygen of C. macrorhizus peroxidase and indicate that the interaction occurs with the same sector of the heme edge as in horseradish peroxidase. The active-site topologies of this pair of plant and fungal peroxidases thus appear to be similar, although the observation that alkylhydrazines add to the heme edge of horseradish but not C. macrorhizus peroxidase clearly shows that there are significant differences in the two active sites.  相似文献   

11.
Non-symbiotic hemoglobins are hexacoordinated heme proteins found in all plants. To gain insight into the importance of the heme hexacoordination and the coordinated distal histidine in general for the possible physiological functions of these proteins, the distal His(E7) of Arabidopsis thaliana hemoglobin (AHb1) was substituted by a leucine residue. The heme properties of the wild-type and mutant proteins have been characterized by electronic absorption, resonance Raman and electron paramagnetic resonance spectroscopic studies at room and low temperatures. Significant differences between the wild-type and mutant proteins have been detected. The most striking is the formation of an uncommon quantum mechanically mixed-spin heme species in the mutant. This is the first observation of such a spin state in a plant hemoglobin. The proportion of this species, which at room temperature coexists with a minor pentacoordinated high-spin form, increases markedly at low temperature.  相似文献   

12.
13.
14.
We propose a general framework for prediction of predefined tumor classes using gene expression profiles from microarray experiments. The framework consists of 1) evaluating the appropriateness of class prediction for the given data set, 2) selecting the prediction method, 3) performing cross-validated class prediction, and 4) assessing the significance of prediction results by permutation testing. We describe an application of the prediction paradigm to gene expression profiles from human breast cancers, with specimens classified as positive or negative for BRCA1 mutations and also for BRCA2 mutations. In both cases, the accuracy of class prediction was statistically significant when compared to the accuracy of prediction expected by chance. The framework proposed here for the application of class prediction is designed to reduce the occurrence of spurious findings, a legitimate concern for high-dimensional microarray data. The prediction paradigm will serve as a good framework for comparing different prediction methods and may accelerate the development of molecular classifiers that are clinically useful.  相似文献   

15.
Oxidation of SCN-, Br-, and Cl- (X-) by horseradish peroxidase (HRP) and other plant and fungal peroxidases results in the addition of HOX to the heme vinyl group. This reaction is not observed with lactoperoxidase (LPO), in which the heme is covalently bound to the protein via two ester bonds between carboxylic side chains and heme methyl groups. To test the hypothesis that the heme of LPO and other mammalian peroxidases is protected from vinyl group modification by the hemeprotein covalent bonds, we prepared the F41E mutant of HRP in which the heme is attached to the protein via a covalent bond between Glu41 and the heme 3-methyl. We also examined the E375D mutant of LPO in which only one of the two normal covalent heme links is retained. The prosthetic heme groups of F41E HRP and E375D LPO are essentially not modified by the HOBr produced by these enzymes. The double E375D/D225E mutant of LPO that can form no covalent bonds is inactive and could not be examined. These results unambiguously demonstrate that a single heme-protein link is sufficient to protect the heme from vinyl group modification even in a protein (HRP) that is normally highly susceptible to this reaction. The results directly establish that one function of the covalent heme-protein bonds in mammalian peroxidases is to protect their prosthetic group from their highly reactive metabolic products.  相似文献   

16.
17.
Actinomycetes secrete into their surroundings a suite of enzymes involved in the biodegradation of plant lignocellulose; these have been reported to include both hydrolytic and oxidative enzymes, including peroxidases. Reports of secreted peroxidases have been based upon observations of peroxidase-like activity associated with fractions that exhibit optical spectra reminiscent of heme peroxidases, such as the lignin peroxidases of wood-rotting fungi. Here we show that the appearance of the secreted pseudoperoxidase of the thermophilic actinomycete Thermomonospora fusca BD25 is also associated with the appearance of a heme-like spectrum. The species responsible for this spectrum is a metalloporphyrin; however, we show that this metalloporphyrin is not heme but zinc coproporphyrin. The same porphyrin was found in the growth medium of the actinomycete Streptomyces viridosporus T7A. We therefore propose that earlier reports of heme peroxidases secreted by actinomycetes were due to the incorrect assignment of optical spectra to heme groups rather than to non-iron-containing porphyrins and that lignin-degrading heme peroxidases are not secreted by actinomycetes. The porphyrin, an excretory product, is degraded during peroxidase assays. The low levels of secreted peroxidase activity are associated with a nonheme protein fraction previously shown to contain copper. We suggest that the role of the secreted copper-containing protein may be to bind and detoxify metals that can cause inhibition of heme biosynthesis and thus stimulate porphyrin excretion.  相似文献   

18.
Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5x10(6) M(-1) s(-1), but only 5.4 M(-1) s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H(2)O(2) contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C(P)) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LC-MS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C(R)). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a non-aligned second Cys within the fourth helix that acts as C(R); (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C(R)-containing loop. Based of these characteristics, most of the non-mammalian CysGPxs, in functional terms, are thioredoxin peroxidases.  相似文献   

19.
20.
L Banci  I Bertini  E A Pease  M Tien  P Turano 《Biochemistry》1992,31(41):10009-10017
1H NMR spectra at 200- and 600-MHz of manganese peroxidase from Phanerochaete chrysosporium and of its cyanide derivative are reported. The spectrum of the native protein is very similar to that of other peroxidases. The assignment of the spectrum of the cyanide derivative has been performed through 1D NOE, 2D NOESY, and COSY experiments. This protein is very similar to lignin peroxidase, the only meaningful difference being the shift of H delta 2 of the proximal histidine. The spectra of the cyanide derivative of these two proteins are compared with those of horseradish peroxidase and cytochrome c peroxidase. The shift pattern of the protons of the proximal histidine is discussed relative to the structural properties which affect the Fe3+/Fe2+ redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号