首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Activated microglia, often associated with neuritic amyloid plaques in the Alzheimer's disease brain, are likely to contribute to the progression of the disease process, e.g., by releasing neurotoxic reactive oxygen and/or nitrogen intermediates. In the present study, whether the amyloid β peptide (Aβ), the principal constituent of amyloid plaques, can stimulate microglial respiratory burst activity and/or microglial production of nitric oxide was examined. Using neonatal rat microglial cultures as a model, it was found that neither the spontaneous release of nitric oxide nor the lipopolysaccharide-induced production of nitric oxide was altered in cultures previously incubated with synthetic Aβ(1–40). for 24 h. In addition, no direct stimulatory effect of Aβ(1–40) on the respiratory burst activity was observed. Nevertheless, concomitant with an increase in the number of responsive cells, a profound priming of the phorbol 12-myristate 13-acetate-evoked production of superoxide anion was observed in Aβ(1–40)-treated cultures. Thus, both the maximal rate and the total phorbol 12-myristate 13-acetate-induced production of superoxide appeared to be statistically significantly higher as compared with untreated cultures. It is concluded that, as far as activation of the microglial respiratory burst is concerned, Aβ(1–40) may merely act as a priming rather than a triggering stimulus.  相似文献   

2.
The involvement and the role of nitric oxide (NO) as a signaling molecule in the course of neuronal apoptosis, whether unique or modulated during the progression of the apoptotic program, has been investigated in a cellular system consisting of cerebellar granule cells (CGCs) where apoptosis can be induced by lowering extracellular potassium. Several parameters involved in NO signaling pathway, such as NO production, neuronal nitric oxide synthase (nNOS) expression, and cyclic GMP (cGMP) production were examined in the presence or absence of different inhibitors. We provide evidence that nitric oxide has dual and opposite effects depending on time after induction of apoptosis. In an early phase, up to 3 h of apoptosis, nitric oxide supports survival of CGCs through a cGMP-dependent mechanism. After 3 h, nNOS expression and activity decreased resulting in shut down of NO and cGMP production. Residual NO then contributes to the apoptotic process by reacting with rising superoxide anions leading to peroxynitrite production and protein inactivation. We conclude that whilst NO over-production protects neurons from death in the early phase of neuronal damage, its subsequent reduction may contribute to neuronal degeneration and ultimate cell death.  相似文献   

3.
4.
一氧化氮的功能及其作用机制(Ⅰ)——性质与功能   总被引:1,自引:0,他引:1  
一氧化氮(nitric oxide,NO)是第一个被发现的参与细胞信号转导的气体信号分子。NO参与的生命活动非常广泛,在神经、免疫、呼吸等系统中发挥着重要作用。很久以来,一氧化氮合酶(nitric oxide synthase,NOS)被认为是人体内合成NO的主要途径,其活性受到严格的调控。直到最近,人们才发现亚硝酸盐(nitrite,NO2-)也可以参与体内NO的合成。本综述总结NO的相关性质与功能,并简介亚硝酸盐的研究进展。  相似文献   

5.
Nitric oxide is a versatile mediator formed by enzymes called nitric oxide synthases. It has numerous homeostatic functions and important roles in inflammation. Within the inflamed brain, microglia and astrocytes produce large amounts of nitric oxide during inflammation. Excessive nitric oxide causes neuronal toxicity and death and mesenchymal stem cells can be used as an approach to limit the neuronal damage caused by neuroinflammation. Mesenchymal stem cell therapy ameliorates inflammation and neuronal damage in disease models of Alzheimer’s disease, Parkinson’s disease, and other neuroinflammatory disorders. Interestingly, we have reported that in vitro, mesenchymal stem cells themselves contribute to a rise in nitric oxide levels through microglial cues. This may be an undesirable effect and highlights a possible need to explore acellular approaches for mesenchymal stem cell therapy in the central nervous system.  相似文献   

6.
Pulmonary hypertension contributes significantly to the morbidity and mortality associated with many pediatric pulmonary and cardiac diseases. Nitric oxide, a gas molecule, is a unique pharmaceutical agent that can be inhaled and thus delivered directly to the lung. Inhaled nitric oxide was approved by the FDA in 1999 as a therapy for infants with persistent pulmonary hypertension. Since then, the use of inhaled nitric oxide has expanded to other neonatal and pediatric conditions, and our knowledge of its properties and mechanisms of action has increased tremendously. This review discusses the physiology of nitric oxide signaling, the most common indications for its clinical use, and promising new investigations that may enhance endogenous production of nitric oxide and/or improve vascular response to it.  相似文献   

7.
Although early studies demonstrated that exogenous estrogen lowered a woman's risk of cardiovascular disease, recent trials indicate that HRT actually increases the risk of coronary heart disease or stroke. However, there is no clear explanation for this discrepancy. Is estrogen a helpful or a harmful hormone in terms of cardiovascular function? This review discusses some recent findings that propose a novel mechanism which may shed significant light upon this controversy. We propose that nitric oxide synthase (NOS) expressed within the vascular wall is a target of estrogen action. Under normal conditions in younger women, the primary product of estrogen action is NO, which produces a number of beneficial effects on vascular biology. As a woman ages, however, there is evidence for loss of important molecules essential for NO production (e.g., tetrahydrobiopterin, l-arginine). As these molecules are depleted, NOS becomes increasingly “uncoupled” from NO production, and instead produces superoxide, a dangerous reactive oxygen species. We propose that a similar uncoupling and reversal of estrogen response occurs in diabetes. Therefore, we propose that estrogen is neither “good” nor “bad”, but simply stimulates NOS activity. It is the biochemical environment around NOS that will determine whether estrogen produces a beneficial (NO) or deleterious (superoxide) product, and can account for this dual and opposite nature of estrogen pharmacology. Further, this molecular mechanism is consistent with recent analyses revealing that HRT produces salutary effects in younger women, but mainly increases the risk of cardiovascular dysfunction in older postmenopausal women.  相似文献   

8.
Abstract: In Parkinson's disease the cell death of dopamine neurons has been proposed to be mediated by an apoptotic death process, in which nitric oxide may be involved. This article reports the induction of apoptosis by nitric oxide and peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells and the antiapoptotic activity of (−)-deprenyl. After the cells were treated with a nitric oxide donor, NOR-4, or a peroxynitrite donor, SIN-1, DNA damage was quantitatively studied using a single-cell gel electrophoresis (comet) assay. NOR-4 and SIN-1 induced DNA damage dose-dependently. Cycloheximide and alkaline treatment of the cells prevented the DNA damage, indicating that the damage is apoptotic and that it depends on the intracellular signal transduction. Superoxide dismutase and the antioxidants reduced glutathione and α-tocopherol protected the cells from the DNA damage. (−)-Deprenyl protected the cells from the DNA damage induced by nitric oxide or peroxynitrite almost completely. The protection by (−)-deprenyl was significant even after it was washed from the cells, indicating that (−)-deprenyl may activate the intracellular system against apoptosis. These results suggest that (−)-deprenyl or related compounds may be neuroprotective to dopamine neurons through its antiapoptotic activity.  相似文献   

9.
Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel's function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O(2-) production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity. This might provide new insight on the mechanisms responsible for accelerated atherosclerosis in diabetes.  相似文献   

10.
Abstract: The effects of α-guanidinoglutaric acid (GGA), the levels of which were increased in the cobalt-induced epileptic focus tissue in the cerebral cortex of cats, on brain nitric oxide synthase (NOS) activity were observed. GGA inhibited NOS activity in a linear mixed manner ( K i = 2.69 µ M ) and was as effective as N G-monomethyl- l -arginine (MeArg; K i = 3.51 µ M ), a well-known NOS inhibitor. Although MeArg was synthesized by substituting the guanidino nitrogen of l -arginine (Arg), GGA was a non-guanidino nitrogen-substituted guanidino compound. On the other hand, Arg, which is an endogenous NOS substrate, elevates the threshold of seizures induced by GGA. There is evidence that GGA is an endogenous, potent, and non-guanidino nitrogen-substituted NOS inhibitor and that suppression of nitric oxide biosynthesis may be involved in GGA-induced convulsions. Therefore, GGA may be a useful tool in elucidating the chemical nature of NOS and the physiological function of nitric oxide.  相似文献   

11.
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing.  相似文献   

12.
Nitric oxide and muscarinic agonists both stimulate motoneuron spike activity and cGMP production in the central nervous system of larval Manduca sexta. The possible role of nitric oxide in mediating muscarinic changes in excitability was examined by measuring cGMP accumulation and proleg motoneuron activity while blocking or mimicking the production of nitric oxide. All the muscarinic-induced changes in cGMP are blocked by the nitric oxide-synthase inhibitor, nitro-l-arginine, an effect that is partially prevented by co-incubation with arginine. Action potential blockage with tetrodotoxin revealed that muscarinic increases in cGMP production have both spike-dependent and spike-independent mechanisms. Furthermore, nitric oxide donors can increase proleg motoneuron activity and this stimulation is blocked by 1H-{1,2,4}oxadiazolo{4, 3-a}quinoxalin-1-one suggesting that it is mediated by a nitric oxide-sensitive guanylyl cyclase. In contrast, nitro-l-arginine and a variety of other nitric oxide-synthase inhibitors and nitric oxide scavengers have no significant effect on muscarinic stimulation of motoneuron activity. Therefore, although a nitric oxide sensitive guanylyl cyclase is capable of elevating spike activity and muscarinic agonists can increase cGMP, this mechanism is not necessary for the normal muscarinic increase in excitability. It is concluded that muscarinic receptors are coupled to nitric oxide and cGMP production in neurons other than those controlling the prolegs. Accepted: 22 July 1999  相似文献   

13.
In primary ocular herpes simplex virus (HSV) infection, nitric oxide may function to control viral replication and herpetic stromal keratitis (HSK) lesions. Recurrent HSK, manifested as corneal opacity and neovascularization, is the potentially blinding sequel to primary infection. Here, we assess the effects of nitric oxide synthase inhibition on a mouse model of recurrent HSK. In preliminary primary infection experiments, NIH inbred mice treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), experienced no changes in post-infection tear, brain, or ganglia virus titers, but encephalitis-related mortality was elevated. After UV-B stimulated viral reactivation, iNOS inhibition did not affect virus shedding or clinical disease. In contrast to primary HSK, there was no exacerbation of mortality in recurrent disease. Our findings indicate that nitric oxide can be neuroprotective without antiviral effects in primary HSK, and does not play a significant role in the pathogenesis of recurrent HSK. Compared with data from other mouse strains, this work suggests that there may be a genetic component to the importance of NO in controlling ocular HSV infection.  相似文献   

14.
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.  相似文献   

15.
Important progress in arginine metabolism includes the discovery of widespread expression of two isoforms of arginase, arginase I and II, not only in hepatic cells but also in non-hepatic cells, and the formation of nitric oxide, a widely distributed signal-transducing molecule, from arginine by nitric oxide synthase. Possible physiological roles of arginase may therefore include regulation of nitric oxide synthesis through arginine availability for nitric oxide synthase. In this paper, arginase was investigated in the submandibular, sublingual, and parotid glands of rat, mouse, guinea pig, and rabbit. From their arginase contents, the salivary glands of these species were divided into two groups. Variable levels of arginase activity were detected in the salivary glands of mouse and rat. However, salivary glands of rabbit and guinea pig had almost no arginase activity. The presence of nitric oxide synthase has been reported in all the salivary glands used in this study. Therefore, one of the important findings was the presence of species specificity in the co-localization of arginase and nitric oxide synthase in the salivary glands of the four species. The highest specific activity of arginase was found in mouse parotid gland. In rat, considerable arginase activity was detected in all three glands, at 3.6–7.3% of that in rat liver. In rat submandibular gland, arginase was detected in both cytosolic and particulate fractions. In addition, arginase was detected in isolated acinar cells, but not in duct cells. Experiments on the intracellular distribution and the effects of the arginase inhibitors ornithine and N-hydroxy-L-arginine (NOHA), suggested the presence of both arginase I and arginase II in rat submandibular gland.Abbreviations cGMP cyclic guanosine 3,5-monophosphate - NO nitric oxide - NOHA N-hydroxy-L-arginine - NOS nitric oxide synthase Communicated by I.D. Hume  相似文献   

16.
Abstract: Humans are exposed to aluminum from environmental sources and therapeutic treatments. However, aluminum is neurotoxic and is considered a possible etiologic factor in Alzheimer's disease and other neurological disorders. The molecular mechanism of aluminum neurotoxicity is not understood. We tested the effects of aluminum on the glutamate-nitric oxide-cyclic GMP pathway in cultured neurons. Neurons were exposed to 50 µ M aluminum in culture medium for short-term (4 h) or long-term (8–14 days) periods, or rats were prenatally exposed, i.e., 3.7% aluminum sulfate in the drinking water, during gestation. Chronic (but not short-term) exposure of neurons to aluminum decreased glutamate-induced activation of nitric oxide synthase by 38% and the formation of cyclic GMP by 77%. The formation of cyclic GMP induced by the nitric oxide-generating agent S -nitroso- N -acetylpenicillamine was reduced by 33%. In neurons from rats prenatally exposed to aluminum but not exposed to it during culture, glutamate-induced formation of cyclic GMP was inhibited by 81%, and activation of nitric oxide synthase was decreased by 85%. The formation of cyclic GMP induced by S -nitroso- N -acetylpenicillamine was not affected. These results indicate that chronic exposure to aluminum impairs glutamate-induced activation of nitric oxide synthase and nitric oxide-induced activation of guanylate cyclase. Impairment of the glutamate-nitric oxide-cyclic GMP pathway in neurons may contribute to aluminum neurotoxicity.  相似文献   

17.
Prenatal stress (PS) has been linked to abnormal cognitive, behavioral and psychosocial outcomes in both animals and humans. Since PS has been shown to induce a cerebellar cytoarchitectural disarrangement and cerebellar abnormalities that have been linked to an impairment of behavioral functions, the aim of the present work was to investigate whether the exposure to PS in a period in which the cerebellum is still immature can induce behavioral deficits in the adult and whether this alterations are correlated with changes in nitric oxide (NO) and cellular oxidative mechanisms in offspring’s cerebellum. Our results show impairments in spatial memory and territory discrimination in PS adult rats. PS offspring also displayed alterations in cerebellar nitric oxide synthase (NOS) expression and activity. Moreover, a correlation between spatial memory deficits and the increase in NOS activity was found. The results found here may point to a role of cerebellar NO in the behavioral alterations induced by stress during early development stages.  相似文献   

18.
Role of Nitric Oxide in the Progression of Pneumoconiosis   总被引:2,自引:0,他引:2  
Conflicting evidence has been reported as to whether nitric oxide (NO) possesses anti-inflammatory or inflammatory properties. Data are presented indicating that in vitro or in vivo exposure to selected occupational dusts, i.e., crystalline silica, organic dust contaminated with endotoxin, or asbestos, results in upregulation of inducible nitric oxide synthase (iNOS) and the production of NO by alveolar macrophages and pulmonary epithelial cells. Nitric oxide production is associated temporally and anatomically with pulmonary damage, inflammation, and disease progression in response to occupational dusts. Blockage of inducible nitric oxide synthase by administration of NOS inhibitors or in iNOS knockout mice decreases the magnitude of injury and inflammation following in vivo exposure to silica, endotoxin, or asbestos. Therefore, NO may play an important role in the initiation and progression of pneumoconiosis.  相似文献   

19.
Free radicals have been implicated in the pathogenesis of an increasing number of disease and inflammatory states. They may cause cell and tissue damage by chemical modification of proteins, carbohydrates, nucleotides and lipids. Under physiological conditions free radicals are parts of normal regulatory circuits and are neutralized by antioxidants. Infections are one cause of increased free radicals production. The aim of our study was to assess whether increased oxidative stress is reflected by erythrocyte nitric oxide synthase activity and nitric oxide levels in guinea pigs with experimental otitis media with effusion (n = 6) and in a control group (n = 6). Erythrocyte nitric oxide synthase activity and nitric oxide levels were measured in both groups. The nitric oxide synthase activity and nitric oxide level in the experimental otitis media with effusion were significantly higher than those of the control group. There was a significant positive correlation between the nitric oxide synthase activity and nitric oxide in the experimental otitis media with effusion group. Thus, increased nitric oxide levels may play an important role in cell and tissue damage due to experimental otitis media with effusion.  相似文献   

20.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号