首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

2.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

3.
For the high production of phenylalanine by Escherichia coli, we cloned the pheAFR and aroFFR genes (FR = feedback resistant), which encoded chorismate mutase P-prephenate dehydratase and 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase that are feedback inhibition-free as to the endproducts, into a temperature-controllable expression vector composed of the PR and PL promoter and a temperature sensitive repressor, cI857, of bacteriophage lambda. The plasmid obtained was designated as pSY130-14, and the temperature dependency of expression of the cloned genes and of phenylalanine production was investigated at different temperatures between 30 and 42°C using the strain AT2471 harbouring the plasmid. Above 35°C, the pheAFR gene and aroFFR gene expressions, and activities of both enzymes continued to increase up to 42°C. The cell concentration remained constant up to 38.5°C, but started to decrease sharply above 40°C, while the cell concentration of the host strain, AT2471, remained constant at all temperatures tested. The concentration of phenylalanine also depended on the temperature, and the highest production of phenylalanine, 18.6 g l−1, was obtained from glucose at 38.5°C in a 2.5 1 reactor.  相似文献   

4.
The branched-chain 2-oxo acids which accumulate in maple-syrup-urine disease inhibited the production of acetylcholine and of lipids, proteins, nucleic acids and of CO2. in sliced adult rat brains incubated with [U-14C] glucose. Inhibition of the biosynthetic reactions was proportional to the inhibition of CO2 production, even though the flux of radioactivity into the biosynthetic products was less than 2% of that to CO2. The oxo acids reduced the production of 14CO2, from [U-14C] glucose and from [2-14C]pyruvic acid more than from [1-14C]pyruvic acid in sliced brains. They inhibited the solubilized oxoglutarate dehydrogenase complex more than they did the solubilized pyruvate dehydrogenase complex. Valine and isoleucine, which also accumulate in maple-syrup-urine disease, inhibited pyruvate kinase from rat brain allosterically. Quantitative comparison of the effects of the disease metabolites on cell-free systems with their effects on fluxes in intact cells indicated that the inhibition of oxoglutarate dehydrogenase appeared to be functionally significant. The residual activities of the other enzymes studied were adequate to support the normal flux of carbohydrates. The oxo acids were effective at concentrations within the range reported to occur in patients with maple-syrup-urine disease. The effects on biosyntheses including that of acetylcholine would be expected to impair brain development and function and could be important in the development of brain disease in the patients. In contrast to the results with metabolites from maple-syrup-urine disease, metabolites which accumulate in phenylketonuria (phenylalanine and 2-oxo-3-phenylpropionic acid) did not inhibit carbohydrate utilization or the biosynthetic reactions studied, under the conditions of these experiments.  相似文献   

5.
Summary The genepheA + coding chorismate niutase P-prephenate dehydratase, one of the regulatory enzymes of phenylalanine biosynthesis, was cloned into the down-stream of PR-PL tandem promoter. In this construction, both the native promoter-operator region and the attenuator region ofpheA + operon were eliminated so as to avoid the repression and attenuation ofpheA + gene expression. The expression ofpheA + gene was directed by PR-PL tandem promoter of bacteriophage lambda and controlled by a temperature sensitive repressor, cI857.It was shown that the expression as well as phenylalanine production was regulated by temperature. Maximum production of phenylalanine, 170 mg/l, was obtained at 40°C. The host strain, MC1065, produced a trace (4 mg/l) of phenylalanine at the same temperature.  相似文献   

6.
The importance of nutritional regulation of plant water flux   总被引:1,自引:0,他引:1  
Transpiration is generally considered a wasteful but unavoidable consequence of photosynthesis, occurring because water is lost when stomata open for CO2 uptake. Additionally, transpiration has been ascribed the functions of cooling leaves, driving root to shoot xylem transport and mass flow of nutrients through the soil to the rhizosphere. As a consequence of the link between nutrient mass flow and transpiration, nutrient availability, particularly that of NO3 , partially regulates plant water flux. Nutrient regulation of transpiration may function through the concerted regulation of: (1) root hydraulic conductance through control of aquaporins by NO3 , (2) shoot stomatal conductance (g s) through NO production, and (3) pH and phytohormone regulation of g s. These mechanisms result in biphasic responses of water flux to NO3 availability. The consequent trade-off between water and nutrient flux has important implications for understanding plant distributions, for production of water use-efficient crops and for understanding the consequences of global-change-linked CO2 suppression of transpiration for plant nutrient acquisition.  相似文献   

7.

Objectives

To determine the origin of 15N-labeled phenylalanine in microbial metabolic flux analysis using 15N as a tracer, a method for measuring phenylalanine δ15N using HPLC coupled with elemental analysis-isotope ratio mass spectrometry (EA-IRMS) was developed.

Results

The original source of the 15N-labeled phenylalanine was determined using this new method that consists of three steps: optimization of the HPLC conditions, evaluation of the isotope fractionation effects, and evaluation of the effect of pre-processing on the phenylalanine nitrogen stable isotope. In addition, the use of a 15N-labeled inorganic nitrogen source, rather than 15N-labeled amino acids, was explored using this method.

Conclusions

The method described here can also be applied to the analysis of metabolic flux.
  相似文献   

8.
The incorporation of l-[U-14C]lysine and l-[U-14C]phenylalanine into piperlongumine has been demonstrated in Piper longum. The subsequent stepwise degradation to methyl-(3,4,5-trimethoxyphenyl)-propanoate and δ-aminovaleric acid revealed that the C6-C3 moiety of the alkamide arises from phenylalanine; the heterocyclic ring is biosynthesised from lysine. It has also been shown that dl-[2-14C]tyrosine and [2-14C]sodium acetate are poor precursors of piperlongumine.  相似文献   

9.
Summary A procedure is described which permits the estimation of the relative activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5.) in intact plant cells, exemplified by buckwheat hypocotyls. Hypocotyl segments are incubated at pH 5.5 with L-[3-3H]phenylalanine. N3HH2, which is liberated from phenylalanine by the action of phenylalanine ammonia-lyase, equilibrates with tissue water to yield 3HOH, which is recovered by sublimation. Participation of phenylalanine transaminase in the reactions leading to 3HOH formation is excluded, and it is conclusively shown that 3HOH is formed intracellularly and not by enzymatic activity leaking out of wounded tissue.Abbreviation PAL phenylalanine ammonia-lyase (E.C. 4.3.1.5.)  相似文献   

10.
Cermelj  Branko  Faganeli  Jadran 《Hydrobiologia》2003,494(1-3):193-199
Anoxic degradation of sedimentary biogenic debris using closed sediment incubation experiments was studied in eutrophic subalpine Lake Bled (NW Slovenia) which, for most of the year, has an anoxic hypolimnion. Production rates of dissolved inorganic carbon (DIC), NH4 +, PO4 3- and dissolved Si, and reduction rates of SO4 2- were measured and anoxic mineralization rates were modelled using G-model. The depth profiles indicated major mineralization of biogenic debris and SO4 2- reduction near the sediment surface. A comparison between depth integrated anoxic mineralization rates and diffusive benthic fluxes of DIC, NH4 + and PO4 3- showed that the anoxic incubation experiments provide a good estimate of N degradation of biogenic debris. The contributions of SO4 2- reduction and acetate fermentation in NH4 + production are about 30 and 70%, respectively. The DIC production accounted for only 15% of DIC benthic flux, indicating that methanogenesis and oxidation of methane provides 80% of this flux. Only about 30% of PO4 3- was released because phosphate precipitated in the closed incubation experiments. The depth integrated production of Si accounts for 70–80% of Si benthic fluxes indicating intense dissolution of biogenic Si in the surficial lake sediment.  相似文献   

11.
The kinetics of the incorporation into protein of [3H]phenylalanine, [3H]tyrosine and [3H]tryptophan were studied with homogenates prepared from whole brain of 1-, 7-, 21- and 60-day-old rats. The maximal velocities (Vmax)of incorporation of phenylalanine and tyrosine decreased and the apparent Michaelis-constants (Km) for all three amino acids increased with increasing age of the rats. Tyrosine had the smallest and tryptophan the largest Km values in all age groups. Phenylalanine competitively inhibited the incorporation of tyrosine, but tyrosine inhibited non-competitively the incorporation of phenylalanine. Tryptophan inhibited competitively the incorporation of phenylalanine, but at least partially non-competitively the incorporation of tyrosine. Phenylalanine and tyrosine did not significantly affect the incorporation of tryptophan in homogenates from 60-day-old rats. In 1-day-old rats only a very large excess of phenylalanine or tyrosine inhibited detectably. The Ki for phenylalanine in the incorporation of tyrosine was significantly smaller in 1- than in 60-day-old rats. In every case the inhibition presumably occurred at a single rate-limiting step in the complicated process of incorporation of amino acids into protein.  相似文献   

12.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

13.
Abstract Carbon dioxide gas flux across the air-water interface is most often treated as a ‘simple’ physical process, primarily responding to wind speed and water temperature. Available experimental data yield an exponential regression equation relating wind speed to the thickness of a stagnant boundary film through which gas diffuses to or from the water. Flux of CO2 is influenced by CO2 hydration reactions in the stagnant boundary layer. High pH and a thick stagnant boundary layer favour chemical enhancement of the CO2 gas flux. The rate of CO2 flux reflects the sum of net organic metabolism plus CaCO3 reactions. Some interesting gas-flux constraints on the rate of net organic carbon production and on global geochemical cycling of CaCO3 emerge. At high pH (circa 10), the maximum net organic carbon production which can be supported by CO2 flux across the air-water interface is about 0.06 mol C m&2 d&1. On a global scale, organic C, not atmospheric C, appears to account for the ‘CO2’ term in the classical CaCO3 dissolution-precipitation reaction.  相似文献   

14.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

15.
The extent of hydroxylation, transamination, and decarboxylation in the metabolism of excess phenylalanine in vivo has been examined by measuring the amount of radioactivity from [14C]phenylalanine that is converted to 14CO2 and urinary metabolites. Transamination and direct decarboxylation represent only 6% of total phenylalanine metabolism. The major aromatic metabolites in the urine after phenylalanine loading are phenylacetylglycine, phenylacetic acid, phenylpyruvate, and phenylalanine. A small but significant portion (1.5%) of phenylalanine is degraded to nonaromatic compounds. The maximum phenylalanine oxidation in vivo is approximately 75%24 h at saturating concentrations of phenylalanine; thus, the major route of degradation of phenylalanine in the rat, even when intake is high, is via formation of acetoacetic acid and fumaric acid.  相似文献   

16.
《Process Biochemistry》2004,39(5):633-636
The influence of tricyclazole on the production of phenolic precursors, glucose uptake and production of fungal mass of Fonsecaea pedrosoi was assessed in the presence of phenylalanine, sodium nitrate and tryptophan. Photocolorimetry was used for the quantitation of glucose and total phenol, and the dry weight method for biomass. The glucose uptake with phenylalanine was 99.85×103 mg/ml; with tryptophan, 99.88×103 mg/ml and with sodium nitrate, 99.90×103 mg/ml. Production of biomass: with tryptophan, 2.7×10−1 mg; with sodium nitrate, 3.0×10−1 mg and with phenylalanine, 3.4×10−1 mg. Tricyclazole induced higher phenol accumulation, lower glucose uptake, inhibition of melanin deposition on the cell and higher production and higher biomass production in relation to glucose uptake for all nitrogen sources tested under these conditions. A negative correlation between biomass production and glucose uptake was observed in the presence of secondary metabolism.  相似文献   

17.
LYOPHILIZATION has been used to preserve viable microorganisms for extended periods of time1. Recently, it has been reported that ribosomes functional in in vitro protein synthesis can be isolated from lyophilized fungi2 and that lyophilized Escherichia coliribosomes retain fully their capacity for poly U-directed phenylalanine incorporation after 5 months storage at room temperature over P2O5 (ref. 3). We have now compared the sedimentation profiles and poly U-directed phenylalanine incorporating activity of three types of rabbit reticulocyte ribosome preparations immediately after isolation and after freezing or lyophilization and storage for various times.  相似文献   

18.
Measurement of protein synthesis in rat lungs perfused in situ   总被引:6,自引:6,他引:0  
Compartmentalization of amino acid was investigated to define conditions required for accurate measurements of rates of protein synthesis in rat lungs perfused in situ. Lungs were perfused with Krebs–Henseleit bicarbonate buffer containing 4.5% (w/v) bovine serum albumin, 5.6mm-glucose, normal plasma concentrations of 19 amino acids, and 8.6–690μm-[U-14C]phenylalanine. The perfusate was equilibrated with the same humidified gas mixture used to ventilate the lungs [O2/CO2 (19:1) or O2/N2/CO2 (4:15:1)]. [U-14C]Phenylalanine was shown to be a suitable precursor for studies of protein synthesis in perfused lungs: it entered the tissue rapidly (t½, 81s) and was not converted to other compounds. As perfusate phenylalanine was decreased below 5 times the normal plasma concentration, the specific radioactivity of the pool of phenylalanine serving as precursor for protein synthesis, and thus [14C]phenylalanine incorporation into protein, declined. In contrast, incorporation of [14C]histidine into lung protein was unaffected. At low perfusate phenylalanine concentrations, rates of protein synthesis that were based on the specific radioactivity of phenylalanyl-tRNA were between rates calculated from the specific radioactivity of phenylalanine in the extracellular or intracellular pools. Rates based on the specific radioactivities of these three pools of phenylalanine were the same when extracellular phenylalanine was increased. These observations suggested that: (1) phenylalanine was compartmentalized in lung tissue; (2) neither the extracellular nor the total intracellular pool of phenylalanine served as the sole source of precursor for protein; (3) at low extracellular phenylalanine concentrations, rates of protein synthesis were in error if calculated from the specific radioactivity of the free amino acid; (4) at high extracellular phenylalanine concentrations, the effects of compartmentalization were negligible and protein synthesis could be calculated accurately from the specific radioactivity of the free or tRNA-bound phenylalanine pool.  相似文献   

19.
Gut  A.  Neftel  A.  Staffelbach  T.  Riedo  M.  Lehmann  B.E. 《Plant and Soil》1999,216(1-2):165-180
The surface flux of nitric oxide from a wheat field was investigated from 23 March to 29 May 1997 in the Kerzersmoos, Switzerland. A plot fertilised with 19 kg N ha-1 in cattle slurry and 40 kg N ha-1 in mineral NH4NO3 fertiliser and a plot receiving no nitrogen containing fertiliser were compared. The flux was calculated based on hourly measurements of the NO soil–atmosphere concentration gradient using the one-dimensional soil diffusion model of Galbally and Johansson (1989). The soil bulk diffusion coefficient was determined from measurements of the 222Rn surface flux and the activity gradient between 10 cm depth and the surface. It ranged between 79% and 0.3% of the NO diffusion coefficient in air and was parameterised by air filled soil pore space. The indirectly determined NO flux agreed well with standard flux measurements using dynamic chambers. The largest NO emission was found following fertiliser application and irrigation. The emission occurred in pulses, which lasted for 4 days up to 3 weeks coinciding with elevated soil ammonium concentrations. Nitric oxide emission in 5 days following application of cattle slurry were 31 g NO-N ha-1 and 5 g NO-N ha-1 from the non-fertilised plot, respectively. Nitric oxide emission in 15 days following application of NH4NO3 was 95 g NO-N ha-1 and 10 g NO-N ha-1 from the non-fertilised plot, respectively. NO emission in 4 days following irrigation on 21 April were 36 g N ha-1 from the fertilised and 39 g N ha-1 from the non-fertilised plot. The daily NO emission before and after fertiliser and irrigation pulses was between 0.3 and 0.7 g NO-N ha-1 d-1. NO production and NO uptake of the soil was measured regularly. No systematic influence of management or climate on NO uptake was found. NO production was strongly stimulated by fertiliser input and soil moisture content. The simulation of NO production could be reproduced using a nitrification algorithm (Riedo et al., 1998) driven by soil temperature, moisture and ammonium concentration. A NO production rate constant of 1.1ċ10-3 h-1 at 15 °C was derived from a linear regression between nitrification and NO production. Introducing the parameterisation of NO production into the model of Galbally and Johansson (1989) the duration and the strength of the NO emission pulses could be reproduced and the total NO emission during the experiment was approximated within a factor of two. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Nd3+, La3+ and Ce3+ at proper concentrations had positive effects on the cell growth of Arnebia euchroma and production of shikonin derivatives. A mixture of rare earth elements (MRE, La2O3:CeO2:Pr6O11: Sm2O3 = 255:175:3:1, mol/mol) behaved the most remarkable effects. Two-stage culture was used for the cell proliferation and the biosynthesis of shikonin derivatives. After 20 days culture, 0.05 mM MRE gave the highest cell biomass (24.8 g dry weight l−1), which was 98.0% higher than that without rare earth elements. Similarly, when 0.05 mM MRE was added to the biosynthesis medium, the highest content (8.9% dry weight) and production (571.1 mg l−1) of shikonin derivatives were obtained, which were 89.4% and 165.3% higher than those without rare earth elements, respectively. The increase of the cell biomass and shikonin derivatives may due to increasing the activities of peroxidase and phenylalanine ammonia lyase caused by the addition of the rare earth elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号