首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.  相似文献   

2.
Nitric oxide (NO) is a signaling molecule implicated in a spectrum of cellular processes including neuronal differentiation. The signaling pathway triggered by NO in physiological processes involves the activation of soluble guanylate cyclase and S-nitrosylation of proteins, and, as recently proposed, nitration of tyrosine residues in proteins. However, little is known about the mechanisms involved and the target proteins for endogenous NO during the progression of neuronal differentiation. To address this question, we investigated the presence, localization, and subcellular distribution of nitrated proteins during neurotrophin-induced differentiation of PC12 cells. We find that some proteins show basal levels of tyrosine nitration in PC12 cells grown in the absence of nerve growth factor (NGF) and that nitration levels increase significantly after 2 days of incubation with this neurotrophin. Nitrated proteins accumulate over a period of several days in the presence of NGF. We demonstrate that this nitration is coupled to activation of nitric oxide synthase. The subcellular distribution of nitrated proteins changes during PC12 cell differentiation, displaying a shift from the cytosolic to the cytoskeletal fraction and we identified alpha-tubulin as the major target of nitration in PC12 cells by N-terminal sequence and MALDI-TOF analyses. We conclude that tyrosine nitration of proteins could be a novel molecular mechanism involved in the signaling pathway by which NO modulates NGF-induced differentiation in PC12 cells.  相似文献   

3.
Alterations of nitric oxide contribute to post‐flight orthostatic intolerance. The aim of this study was to investigate the changes of inducible nitric oxide synthase (iNOS) and the mechanisms underlying regulation of iNOS by simulated microgravity in human umbilical vein endothelial cells (HUVECs). Clinorotation, a simulated‐model of microgravity, increased iNOS expression and promoter activity in HUVECs. The transactivations of NF‐κB and AP‐1 were suppressed by 24 h clinorotation. A key role for AP‐1, but not NF‐κB in the regulation of iNOS was shown. (1) PDTC, a NF‐κB inhibitor, had no effect on clinorotation upregulation of iNOS. (2) SP600125, a JNK‐specific inhibitor, which resulted in inhibition of AP‐1 activity, enhanced the iNOS expression and promoter activity in clinorotation. (3) Overexpression of AP‐1 remarkably attenuated the upregulation effect of clinorotation. These findings indicate that clinorotation upregulates iNOS in HUVECs by a mechanism dependent on suppression of AP‐1, but not NF‐κB. These results support a key role for AP‐1 in the signaling of postflight orthostatic intolerance. J. Cell. Biochem. 107: 357–363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Protein tyrosine nitration is an important post-translational modification mediated by nitric oxide (NO) associated oxidative stress, occurring in a variety of neurodegenerative diseases. In our previous study, an elevated level of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein was observed in different brain regions of acute methamphetamine (METH) treated rats, indicating the possibility of an enhanced expression of protein nitration that is mediated by excess NO through the DDAH1/ADMA (Asymmetric Dimethylated l-arginine)/NOS (Nitric Oxide Synthase) pathway. In the present study, proteomic methods, including stable isotope labeling with amino acids in cell culture (SILAC) and two dimensional electrophoresis, were used to determine the relationship between protein nitration and METH induced neurotoxicity in acute METH treated rats and PC12 cells. We found that acute METH administration evokes a positive activation of DDAH1/ADMA/NOS pathway and results in an over-production of NO in different brain regions of rat and PC12 cells, whereas the whole signaling could be repressed by DDAH1 inhibitor Nω-(2-methoxyethyl)-arginine (l-257). In addition, enhanced expressions of 3 nitroproteins were identified in rat striatum and increased levels of 27 nitroproteins were observed in PC12 cells. These nitrated proteins are key factors for Cdk5 activation, cytoskeletal structure, ribosomes function, etc. l-257 also displayed significant protective effects against METH-induced protein nitration, apoptosis and cell death. The overall results illustrate that protein nitration plays a significant role in the acute METH induced neurotoxicity via the activation of DDAH1/ADMA/NOS pathway.  相似文献   

5.
Tyrosine nitration of proteins is emerging as a post-translational modification playing a role in physiological conditions. Looking for the molecular events triggered by nitric oxide in nerve growth factor-induced neuronal differentiation, we now find that nitration occurs on the microtubule-associated protein tau. In differentiated PC12 cells, we have identified as tau a nitrated protein that co-immunoprecipitates with alpha-tubulin and indicated that the modified protein is associated with the cytoskeleton but it is confined to a restricted cell region. This paper supplies the first evidence that nitration of tau occurs in a physiological process and suggests that it could play a role in neuronal differentiation.  相似文献   

6.
Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.  相似文献   

7.
In this mini-review, oxidant-induced transferrin receptor-mediated iron-signaling and apoptosis are described in endothelial and neuronal cells exposed to a variety of oxidative stresses. The role of nitric oxide and nitration in the regulation of iron homeostasis and oxidant-induced apoptosis is described. The interrelationship between oxidative stress, iron-signaling, and nitric oxide-dependent proteasomal function provides a rational mechanism that connects both oxidative and nitrative modifications.  相似文献   

8.
In previous studies it has been shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by altered gene expression. In this study an investigation was carried out into how different g conditions affect the proteome of such cells. For this purpose, callus cells were exposed to 8 g (centrifugation) and simulated microgravity (2-D clinorotation: fast rotating clinostat, yielding 0.0016 g at maximum; and 3-D random positioning) for up to 16 h. Extracts containing total soluble protein were subjected to 2-D SDS-PAGE. Image analysis of Sypro Ruby-stained gels showed that approximately 28 spots reproducibly and significantly (P <0.05) changed in amount after 2 h of hypergravity (18 up- and 10 down-regulated). These spots were analysed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). In the case of 2-D clinorotation, 19 proteins changed in a manner similar to hypergravity, while random positioning affected only eight spots. Identified proteins were mainly stress related, and are involved in detoxification of reactive oxygen species, signalling, and calcium binding. Surprisingly, centrifugation and clinorotation showed homologies which were not detected for random positioning. The data indicate that simulation of weightlessness is different between clinorotation and random positioning.  相似文献   

9.
Increased levels of a 40-42 amino-acid peptide called the amyloid beta protein (A beta) and evidence of oxidative damage are early neuropathological markers of Alzheimer's disease (AD). Previous investigations have demonstrated that melatonin is decreased during the aging process and that patients with AD have more profound reductions of this hormone. It has also been recently shown that melatonin protects neuronal cells from A beta-mediated oxidative damage and inhibits the formation of amyloid fibrils in vitro. However, a direct relationship between melatonin and the biochemical pathology of AD had not been demonstrated. We used a transgenic mouse model of Alzheimer's amyloidosis and monitored over time the effects of administering melatonin on brain levels of A beta, abnormal protein nitration, and survival of the mice. We report here that administration of melatonin partially inhibited the expected time-dependent elevation of beta-amyloid, reduced abnormal nitration of proteins, and increased survival in the treated transgenic mice. These findings may bear relevance to the pathogenesis and therapy of AD.  相似文献   

10.
The biological implication of protein tyrosine nitration in signaling pathways triggered by nitric oxide is recently emerging. Here we report for the first time that nitrotyrosination occurs in the neural intermediate filament protein peripherin. In neuron-like PC12 cells, nitrated peripherin is associated with the cytoskeleton fraction, its level increases during the progression of NGF-induced differentiation and the nitrated protein remains closely associated with stable microtubules. Tyr 17 and Tyr 376 were identified by MALDI-TOF analyses as two specific residues endogenously nitrated. Finally, peripherin nitration is not restricted to PC12 cells but it is also present in vivo in rat brain. Gabriella Tedeschi and Graziella Cappelletti contributed equally to this work.  相似文献   

11.
Hepatocarcinoma is the fifth most common neoplasm and the third cause of cancer-related death. The development of genetic- and/or molecular-based therapies is urgently required. The administration of high doses of nitric oxide (NO) promotes cell death in hepatocytes. NO contributes to cell signaling by inducing oxidative/nitrosative-dependent post-translational modifications. The aim of the present study was to investigate protein modifications and its relation with alteration of cell proliferation and death in hepatoma cells. Increased intracellular NO production was achieved by stable nitric oxide synthase-3 (NOS-3) overexpression in HepG2 cells. We assessed the pattern of nitration, nitrosylation and carbonylation of proteins by proteomic analysis. The results showed that NOS-3 cell overexpression increased oxidative stress, which affected proteins mainly involved in cell protein folding. Carbonylation also altered metabolism, as well as immune and antioxidant responses. The interaction of nitrosative and oxidative stress generated tyrosine nitration, which affected the tumor marker Serpin B3, ATP synthesis and cytoskeleton. All these effects were associated with a decrease in chaperone activity, a reduction in cell proliferation and an increased cell death. Our study showed that alteration of nitration, nitrosylation and carbonylation pattern of proteins by NO-dependent oxidative/nitrosative stress was related to a reduction of cell survival in a hepatoma cell line.  相似文献   

12.
Studies in modeled microgravity or during orbital space flights have clearly demonstrated that endothelial cell physiology is strongly affected by the reduction of gravity. Nevertheless, the molecular mechanisms by which endothelial cells may sense gravity force remain unclear. We previously hypothesized that endothelial cell caveolae could be a mechanosensing system involved in hypergravity adaptation of human endothelial cells. In this study, we analyzed the effect on the physiology of human umbilical vein endothelial cell monolayers of short exposure to modeled microgravity (24–48h) obtained by clinorotation. For this purpose, we evaluated the levels of compounds, such as nitric oxide and prostacyclin, involved in vascular tone regulation and synthesized starting from caveolae-related enzymes. Furthermore, we examined posttranslational modifications of Caveolin (Cav)-1 induced by simulated microgravity. The results we collected clearly indicated that short microgravity exposure strongly affected endothelial nitrix oxide synthase activity associated with Cav-1 (Tyr 14) phosphorylation, without modifying the angiogenic response of human umbilical vein endothelial cells. We propose here that one of the early molecular mechanisms responsible for gravity sensing of endothelium involves endothelial cell caveolae and Cav-1 phosphorylation.  相似文献   

13.
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions. Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin) and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas, and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity.  相似文献   

14.
Rösner H  Wassermann T  Möller W  Hanke W 《Protoplasma》2006,229(2-4):225-234
Summary. Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to “simulated weightlessness” (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) – but not to 2 g (hypergravity, centrifugation) – resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity. Correspondence and reprints: Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Federal Republic of Germany.  相似文献   

15.
The existence of an inducible mitochondrial nitric oxide synthase has been recently related to the nitrosative/oxidative damage and mitochondrial dysfunction that occurs during endotoxemia. Melatonin inhibits both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase activities, a finding related to the antiseptic properties of the indoleamine. Hence, we examined the changes in inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase expression and activity, bioenergetics and oxidative stress in heart mitochondria following cecal ligation and puncture-induced sepsis in wild-type (iNOS(+/+)) and inducible nitric oxide synthase-deficient (iNOS(-/-)) mice. We also evaluated whether melatonin reduces the expression of inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase, and whether this inhibition improves mitochondrial function in this experimental paradigm. The results show that cecal ligation and puncture induced an increase of inducible mitochondrial nitric oxide synthase in iNOS(+/+) mice that was accompanied by oxidative stress, respiratory chain impairment, and reduced ATP production, although the ATPase activity remained unchanged. Real-time PCR analysis showed that induction of inducible nitric oxide synthase during sepsis was related to the increase of inducible mitochondrial nitric oxide synthase activity, as both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase were absent in iNOS(-/-) mice. The induction of inducible mitochondrial nitric oxide synthase was associated with mitochondrial dysfunction, because heart mitochondria from iNOS(-/-) mice were unaffected during sepsis. Melatonin treatment blunted sepsis-induced inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase isoforms, prevented the impairment of mitochondrial homeostasis under sepsis, and restored ATP production. These properties of melatonin should be considered in clinical sepsis.  相似文献   

16.
A novel role of melatonin was unveiled, using immortalized human keratinocyte cells (HaCaT) as a model system. Within a time window compatible with its circadian rhythm, melatonin at nanomolar concentration raised both the expression level of the neuronal nitric oxide synthase mRNA and the nitric oxide oxidation products, nitrite and nitrate. On the same time scale, a depression of the mitochondrial membrane potential was detected together with a decrease of the oxidative phosphorylation efficiency, compensated by glycolysis as testified by an increased production of lactate. The melatonin concentration, ~ nmolar, inducing the bioenergetic effects and their time dependence, both suggest that the observed nitric oxide-induced mitochondrial changes might play a role in the metabolic pathways characterizing the circadian melatonin chemistry.  相似文献   

17.
Gravitropic responses of dark grown oat coleoptiles were measured in weightlessness and under clinorotation on earth. The tests in microgravity were conducted in Spacelab during the IML-1 mission and those on clinostats were conducted in laboratories on earth. The same apparatus was used for both kinds of tests. In both cases autotropism and gravitropic responsiveness were determined. This allowed a quantitative comparison between the plants' responses after receiving the same tropistic stimulations either in weightlessness or on clinostats.
Autotropism was observed with oat coleoptiles responding in weightlessness but it did not occur on clinostats. Gravitropic responsiveness was measured as the ratio between the incremental bending response (degrees curvature) and the corresponding incremental g-dose (stimulus intensity times duration for which it was applied). Plants were tested at either of two stages of coleoptile development (i.e. different coleoptile lengths). From a total of six different kinds of critical comparisons that could be made from our tests that provided data for clinorotated vs weightless plants, three showed no significant difference between responses in simulated vs authentic weightlessness. Three other comparisons showed highly significant differences. Therefore, the validity of clinorotation as a general substitute for space flight was not supported by these results.  相似文献   

18.
Tao L  Li X  Zhang L  Tian J  Li X  Sun X  Li X  Jiang L  Zhang X  Chen J 《PloS one》2011,6(10):e26055
Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. The molecule, 2,3,5,4'-tetrahydr- oxystilbene-2-O-β-D-glucoside (TSG), is a potent antioxidant derived from the Chinese herb, Polygonum multiflorum Thunb. In this study, we investigated the protective effect of TSG against 6-hydroxydopamine-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. Our data demonstrated that TSG significantly reversed the 6-hydroxydopamine-induced decrease in cell viability, prevented 6-hydroxydopamine-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, TSG slowed the accumulation of intracellular reactive oxygen species and nitric oxide, counteracted the overexpression of inducible nitric oxide syntheses as well as neuronal nitric oxide syntheses, and also reduced the level of protein-bound 3-nitrotyrosine. These results demonstrate that the protective effects of TSG on rat adrenal pheochromocytoma PC12 cells are mediated, at least in part, by the ROS-NO pathway. Our results indicate that TSG may be effective in providing protection against neurodegenerative diseases associated with oxidative stress.  相似文献   

19.
We examined the impact of peroxiredoxin-I (Prx-I) and peroxiredoxin-II (Prx-II) stable transduction on oxidative stress in PC12 neurons and NIH3T3 fibroblasts and found variability depending on cell type and Prx subtype. In PC12 neurons, Prx-II suppressed reactive oxygen species (ROS) generation by 36% (p < 0.01) relative to vector-infected control cells. However, in NIH3T3 fibroblasts, Prx-II overexpression resulted in a 97% (p < 0.01) increase in ROS generation. Prx-I transduction elevated ROS generation in PC12 cells. The effect of Prx-I on PC12 cells was potentiated in the presence of menadione, and suppressed by an inhibitor of nitric oxide synthetase. Prx-II transduction resulted in 25–35% lower levels of glutathione (GSH) in both cell types, while Prx-I transduction increased GSH levels in neurons and decreased GSH and caspase-3 activity in fibroblasts. Prx-I and Prx-II also had differing effects on cell viability. These results suggest that Prx-I and Prx-II can either increase or decrease intracellular oxidative stress depending on cell type or experimental conditions, particularly conditions affecting nitric oxide levels.Equivalent contributions were made by each author  相似文献   

20.
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号