首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
花棒液流变化规律及其对环境因子的响应   总被引:10,自引:0,他引:10  
在西北干旱沙区,采用茎流热平衡技术对花棒主茎、一级分枝和二级分枝液流进行研究.结果表明,在整个生长季内液流速率日变化曲线峰型表现各异,但在短时间段内其液流速率日变化有较强的规律性.主茎和一级分枝液流速率的曲线在生长季中期出现了剧烈动荡,在生长季末期到达最大值后同一数值维持较长时间;二级分枝的液流量在生长季初期出现了“昼低夜高”、生长季中期的液流量低于6、9月份液流量;主茎和一级分枝单日液流量的最大值出现在7月份,分别为5 781.6 g和3 180 g,二级分枝的最大值出现在9月份(480 g).日液流量大小依次为主茎>一级分枝>二级分枝,而液流通量在整个生长期内表现比较复杂.通过对同时观测的气象因子的分析,表明在整个生长季影响花棒液流速率的主导因子是土壤含水率,而在一个较短的时间段内,光照强度、气温和水汽压亏缺则是影响花棒液流速率的主导因子.  相似文献   

2.
攀援植物绞股蓝幼苗对光照强度的形态和生长反应   总被引:43,自引:1,他引:42       下载免费PDF全文
 利用遮阳网产生光照强度梯度,以研究攀援植物绞股蓝(Gynostemma pentaphyllum)幼苗对光梯度的形态和生长反应。结果表明:1)相对生长速率、净同化速率和总生物量随光照强度减弱而降低,总叶面积、比茎长、株高、分枝角度、叶面积率和比叶面积却增加;2)株高生长与相对生长速率成负相关;3)幼苗生物量分配对光梯度的反应不敏感。这些结果意味着绞股蓝幼苗的形态和生长反应对不同光环境具有可塑性,比茎长和株高随光照减弱而增加有利于绞股蓝幼苗“寻找”到外界支持物。  相似文献   

3.
镇江北固山湿地虉草季节生长动态研究   总被引:3,自引:0,他引:3  
在虉草(Phalaris arundinacea)整个生长季中,定期测量其株长、鞘高、叶龄及生物量等生长指标,分析和研究虉草的季节生长动态。结果显示:虉草各指标的季节生长动态基本一致,皆呈“S”型曲线,且均以三次方程拟合效果最佳。绝对生长速率和相对生长速率基本同步,呈单峰型曲线,但在负增长出现的时间上稍有差异。各生长指标累积绝对、相对生长速率的季节动态也呈“S”型曲线,同样三次方程拟合效果最佳。  相似文献   

4.
内蒙古典型草原几种不同植物的生长动态比较   总被引:3,自引:0,他引:3  
张彩琴  杨持 《生态学杂志》2007,26(11):1712-1718
选择内蒙古典型草原羊草 大针茅群落中的优势植物羊草、大针茅、冰草和冷蒿,采用多种数量化指标,分别比较一个生长季内的生长动态、绝对生长速率(AGR)、相对生长速率(RGR)。结果表明:植物地上生物量均呈S形增长,8月中旬达到最大值;主要生长季内受降水不足的抑制作用依次为羊草>冰草>大针茅>冷蒿。羊草和冰草AGR均呈双峰曲线,大针茅呈三峰曲线,冷蒿呈单峰曲线。生长主要集中在中前期,AGR大小依次为冷蒿(0.099g.株-1.d-1)>大针茅(0.029g.株-1.d-1)>羊草(0.003g.株-1.d-1)>冰草(0.002g.株-1.d-1)。RGR与AGR有相似的季节性变化,其中羊草、冰草、冷蒿RGR均呈单峰曲线,大针茅呈三峰曲线;生长季初期RGR均表现出最高,生长潜能较大,7月末至8月中旬呈现负值;4种植物的最大净积累效率依次为冷蒿(0.108g.株-1.d-1.g-1)>大针茅(0.064g.株-1.d-1.g-1)>羊草(0.055g.株-1.d-1.g-1)>冰草(0.042g.株-1.d-1.g-1)。不同生活型的生长曲线及生长速率均存在较大差异,但同属于根茎型的羊草和冰草生长动态曲线明显相似。  相似文献   

5.
刈割、施肥和浇水对垂穗披碱草补偿生长的影响   总被引:2,自引:1,他引:1  
植物的补偿生长特性受放牧强度和生境资源获得性的影响。通过为期2年的野外控制实验,研究了刈割高度(留茬1cm、3cm及不刈割)、施肥(施、不施)和浇水(浇、不浇)处理对垂穗披碱草(Elymus natans)补偿生长的影响,并结合对各处理分株密度、比叶面积、净光合速率和相对生长率的变化研究,探讨了其补偿生长机制。结果表明:刈割后垂穗披碱草分株种群密度显著增加,补偿生长高度显著降低,比叶面积和相对生长率随刈割强度增加而呈上升趋势,叶片净光合速率变化不显著;施肥能显著增加垂穗披碱草的补偿生长高度、比叶面积、叶片净光合速率和相对生长率;浇水处理以及刈割、浇水、施肥处理之间的交互作用均不显著。可见,在刈割条件下,垂穗披碱草具有一定的密度补偿机制,但由于刈割抑制补偿性高生长,导致分株高度出现低补偿。因此,即使刈割后比叶面积和株高相对生长率显著增加,也不一定必然引起株高的超补偿;但施肥可显著提高垂穗披碱草的补偿能力,增加耐牧性,证实了改进后的限制资源模型的预测。  相似文献   

6.
降雨量变化对入侵植物豚草植株生长的影响   总被引:1,自引:0,他引:1  
采用温室盆栽模拟试验研究了不同降雨水平对入侵植物豚草(Ambrosia artemisiifolia)和土著伴生植物肖梵天花(Urena lobata)植株形态、生长、生物量积累与分配的影响。试验共设置1800 mm·a-1(High precipitation treatment, HP)、1200 mm·a-1(Midium precipitation treatment, MP)和800 mm·a-1(Low precipitation treatment, LP)3 个降雨梯度, 结果表明: (1)在各个降雨量水平, 豚草的株高、分枝数量、分枝长度、叶片数均高于伴生土著植物肖梵天花, 其中两物种株高、分枝数量的差异均达显著水平; 豚草的根生物量比(Root mass fraction, RMF)、根冠比(Root mass/crown mass, R/C)显著低于肖梵天花, 茎生物量比(Stem mass fraction, SMF)、比叶面积(Specific leaf area, SLA)和叶根比(Leaf area to root mass ratio, LARM)则显著高于肖梵天花。(2)豚草的分枝数量、叶片数、总叶面积、根茎叶器官生物量、总生物量以及平均相对生长速率(Relative growth rate, RGR)、净同化速率(Net assimilation rate, NAR)等指标均在MP 处理获得最大值, 降雨量减少或增加均导致上述指标下降, 尤以降雨量减少为甚;肖梵天花的相应指标以及株高均随降雨量上升显著增加并在HP 处理获得最大值。降雨量增加对豚草的生物量分配无明显影响, 但显著提高肖梵天花的茎生物量分配比例。两种植物的叶面积比(Leaf area ratio, LAR)、SLA 均不随降雨量的变化而波动。这说明豚草在野外更偏好入侵中等湿润程度的自然环境, 过于干旱或潮湿均导致其入侵能力下降。  相似文献   

7.
紫茎泽兰和飞机草的形态和光合特性对磷营养的响应   总被引:31,自引:2,他引:31  
比较研究了紫茎泽兰和飞机草的生长、形态、生物量分配和光合特性对磷营养的可塑性反应,及与其入侵性的关系.结果表明,两种入侵植物对磷营养变化表现出很强的可塑性和适应性.低磷时,两种植物的根生物量比增大,利于养分吸收;高磷时,两种植物的比叶面积、最大净光合速率、光饱和点、单位面积的叶绿素和类胡萝卜素含量增大,同化面积和同化能力增强,利于碳积累.相比之下,紫茎泽兰对磷的适应性更强.随供磷量的增加,紫茎泽兰和飞机草的相对生长速率、总生物量、株高、分枝数、叶面积指数和最大净光合速率均显著增大,过量磷素对上述参数抑制较小,表明两种入侵植物偏好较高的磷环境,土壤磷含量升高有利于其入侵,并在高磷时,通过增大株高、分枝数和叶面积指数荫蔽排挤本地种.在本地种基本停止生长的干季,紫茎泽兰和飞机草仍维持较高的相对生长速率.这也与其入侵性密切相关.  相似文献   

8.
为了解武陵山区黄花蒿(Artemisia annua)的生长特性,对其生长发育规律进行了研究。结果表明,黄花蒿的生长发育可划分为苗期、分枝初期、分枝盛期、蕾期、花期、种子成熟期。叶面积在分枝盛期增长最快,叶面积指数随着枝叶的生长呈直线上升。种子成熟期叶面积比呈总体降低的趋势。净同化率变化较小,分别在苗期和花期出现了两个小高峰。相对生长率变化较大,作物生长率在苗期和种子成熟期较低,分枝盛期较高。整个生长期干物质积累规律呈S曲线。6月下旬至8月下旬,黄花蒿生长进入分枝盛期,干物质积累速率加快,叶片产量迅速增加,此时期是黄花蒿叶片增产的关键时期,应注重氮磷钾肥的平衡施用。  相似文献   

9.
灵芝三萜酸分批发酵的非结构动力学模型   总被引:1,自引:1,他引:1  
研究了灵芝胞内和胞外三萜酸在30L发酵罐中分批发酵的动力学特征。利用Sigmoid函数构建了灵芝细胞生长、底物消耗、胞内和胞外三萜酸的非结构动力学模型,并根据Boltzmann拟合求解出各模型参数。结果表明,各模型预测值能够较好地吻合实验实测值。灵芝细胞比生长速率在第2.5天达到最大值(μmax),为0.700d?1;葡萄糖比消耗速率在第2.4天达到最大值(qS, max)为1.060d?1;胞内三萜酸比合成速率在第4.7天达到最大值(qITA, max)为11.345mg/(g·d);胞外三萜酸比合成速  相似文献   

10.
刈割、施肥和浇水对矮嵩草补偿生长的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对青海海北高寒矮嵩草(Kobresia humilis)草甸进行为期3年的野外控制试验, 研究了刈割(留茬1 cm、3 cm及不刈割)、施肥(2.5 g·m-2尿素+ 0.6 g·m-2磷酸二胺、不施肥)和浇水(20.1 kg·m-2、不浇水)处理对矮嵩草补偿生长(包括分株密度、株高和分株地上生物量)的影响, 及其比叶面积、叶片净光合速率和相对增长率的变化, 探讨矮嵩草补偿生长的机制。研究结果表明: 刈割后, 矮嵩草的补偿生长高度和比叶面积显著降低; 分株密度有增加的趋势, 但会随刈割强度的增加而下降; 株高和生物量的相对增长率随刈割强度的增加而呈上升趋势; 补偿地上生物量在重度刈割处理下最高。施肥能显著增加矮嵩草的补偿高度、分株密度、补偿地上生物量、株高相对增长率、生物量相对增长率、比叶面积和净光合速率; 与不浇水处理相比, 浇水处理对重度刈割处理下的分株地上生物量、密度相对增长率、比叶面积和净光合速率无影响, 而显著降低了中度刈割处理下的补偿高度和株高相对增长率, 提高了不刈割处理下的分株密度和重度刈割处理下的生物量相对增长率。刈割、施肥和浇水处理的交互作用也显示出刈割与施肥对矮嵩草补偿生长具有拮抗效应, 而刈割与浇水具有协同效应。上述结果说明, 矮嵩草在刈割后可通过增加分株密度和相对增长率等途径来提高补偿能力, 弥补在生长高度上出现的低补偿, 而施肥可显著抵消刈割的不利影响, 提高矮嵩草的补偿能力。  相似文献   

11.
四种荒漠草原植物的生长对不同氮添加水平的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.  相似文献   

12.
《植物生态学报》2016,40(2):165
Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn.  相似文献   

13.
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures.  相似文献   

14.
Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N]), phosphorus ([P]), and N∶P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra) transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation). We also measured the relative growth rate (RGR) of seedling height, and developed the relationships between RGR and leaf [N], [P] and N∶P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained) generally had no significant effects on leaf [N], [P], N∶P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N∶P ratio. Considering the low [P] and high N∶P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.  相似文献   

15.
以上海地区引种的一年生地被石竹实生苗为材料,研究其苗高生长变化、生物量积累和分配、光合特性及其变化规律,并分析主要生理生态因子对其净光合速率的影响。结果表明:(1)3~6月份为地被石竹苗高生长速生期,生长量为年生长量的65.93%,实生苗各部分器官的生物量总体呈现上升的趋势;3~6月份苗木以地上部分生物量积累为主,其占总生物量的比例从46.89%升至65.60%,6月份以后地下部分生物量所占比例从34.40%升至53.11%。(2)地被石竹叶片净光合速率(Pn)日变化在春季和秋季呈单峰曲线型,而在夏季表现为双峰曲线,且具有典型的光合"午睡"现象。(3)影响光合变化的主要决定生理生态因子:春季为蒸腾速率和气温,夏季为气孔导度和大气CO2摩尔分数,秋季为胞间CO2摩尔分数和光合有效辐射;限制地被石竹Pn日变化生理生态因子:春季为胞间CO2摩尔分数和光合有效辐射,夏季为蒸腾速率和空气相对湿度,秋季为气孔导度和气温。(4)地被石竹具有较高水平的光补偿点(56.94μmol·m-2·s-1)和光饱和点(780.07μmol·m-2·s-1),应属于喜光植物。  相似文献   

16.
The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and root respiration of Plantago major L. ssp. major L. was investigated. Plants were grown in a nutrient solution in growth chambers at 350 and 700 μl I−1 CO2 during 7 weeks. The total dry weight of the Co2-enriched plants at the end of this period was 50% higher than that of control plants. However, the relative growth rate (RGR) was stimulated only during the first half of the growing period. The transient nature of the stimulation of the RGR was not likely to be due to end-product inhibition of photosynthesis. It is suggested that in P. major , a rosette plant, self-shading causes a decline in photosynthesis and results in an increase in the shoot: root ratio and a decrease in RGR. CO2-enriched plants grow faster and cosequently suffer more from self-shading. Corrected for this ontogenetic drift, high CO2 concentrations stimulated the RGR of P. major throughout the entire experiment.  相似文献   

17.
Aims Increasing anthropogenic nitrogen (N) deposition has been claimed to induce changes in species composition and community dynamics. A greenhouse experiment was conducted to examine the effect of increased N availability on growth and functional attributes of seedlings of five tree species with different life history characteristics under varying irradiances. The following questions have been addressed: (i) how do the pioneer and non-pioneer species respond in absolute growth and relative growth rate (RGR) to the interaction of light and nitrogen? (ii) how does the interaction between irradiance and nitrogen availability modulate growth attributes (i.e. functional attributes)? (iii) is there any variation in growth responses between leguminous and non-leguminous species along the light and nitrogen gradients?Methods Seedlings of five tree species (Acacia catechu, Bridelia retusa, Dalbergia sissoo, Lagerstroemia parviflora and Terminalia arjuna) were subjected to twelve combinations of irradiance and N levels. Various growth traits, including height (HT), basal area (BA), whole plant dry biomass (M D), leaf mass per unit area (LMA), leaf area ratio (LAR), net assimilation rate (NAR), RGR, biomass fractions, root-to-shoot ratio (R:S) and leaf nitrogen content, were studied to analyse intra- and inter-specific responses to interacting light and N gradients.Important findings Significant interactions for irradiance and N availability for majority of growth attributes indicates that growth and biomass allocation of seedlings were more responsive to N availability under high irradiance. However, species responded differentially to N addition and they did not follow successional status. Slow growers (B. retusa, a shade-tolerant species and L. parviflora, a light demander) exhibited greater response to N enrichment than the fast growers (A. catechu, D. sissoo and T. arjuna). However, N-mediated increment in growth traits was greater in non-legumes (B. retusa, L. parviflora and T. arjuna) compared with that of legumes (A. catechu and D. sissoo). Allocation of biomass to root was strongly suppressed at the highest N supply across species; however, at high irradiance and high N availability, a greater suppression in R:S ratio was observed for B. retusa. NAR was a stronger determinant of RGR relative to LAR, suggesting its prominent role in increased RGR along increasing irradiances. Overall, a higher growth response of slow-growing species to elevated N levels, particularly the non-pioneers (B. retusa and L. parviflora) suggests that future N deposition may lead to perturbations in competition hierarchies and species composition, ultimately affecting community dynamics in nutrient-poor tropical dry forests.  相似文献   

18.
Relative growth and nutrient accumulation rates for tobacco   总被引:9,自引:0,他引:9  
Summary Tobacco plants (Nicotiana tabacum L.) were grown from transplanting until floral expression in the phytotron units of Southeastern Plant Environment Laboratories to evaluate the relationship between relative growth rate (RGR) and relative accumulation rates (RAR) of N, P, K, Ca, and Mg. RAR is calculated to be analogous to RGR. Plants were grown in both controlled-environment rooms with artificial light and air-conditioned greenhouses with natural light at three temperature conditions and three application rates of N-P-K. RGR and RAR were calculated only for the period of grand growth which occurred within the interval from 7 to 32 days after transplanting. In general, neither RGR nor RAR were affected by temperature or nutrient level. However, both temperature and nutrient level affected dry matter accumulation of the plants apparently by an influence on the rapidity with which plants adjusted to their new environment during the initial 7-day interval after transplanting. RAR for P and K were coequal with RGR of the whole plant; thus, the concentrations of P and K within the plant tended to remain constant during growth. RAR for N, Ca, and Mg were less than RGR for the whole plant; thus, internal concentrations of these nutrients declined during growth. RAR of N, Ca, and Mg for the whole plant were equivalent to RGR of the roots. As a rationale for the association of RGR of roots and RAR of N, it is proposed that the soluble carbohydrate pool in the roots concurrently influences both N absorption, as NO3 -, and growth of new roots of immature plants. Research reported in this paper was supported in part by National Science Foundation (RANN) Grants GI-39229 and GI-39230. Operation of the Phytotron Units of Southeastern Plant Environmental Laboratories at Duke and North Carolina State Universities was supported by National Science Foundation Grants GB-28950-1A and GI-28951. Approved as Paper Number 4773 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC. Research reported in this paper was supported in part by National Science Foundation (RANN) Grants GI-39229 and GI-39230. Operation of the Phytotron Units of Southeastern Plant Environmental Laboratories at Duke and North Carolina State Universities was supported by National Science Foundation Grants GB-28950-1A and GI-28951. Approved as Paper Number 4773 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC.  相似文献   

19.
Seven annual-perennial pairs of grass species (six congeneric and one pair taken at random) were grown under productive conditions in the laboratory in order to investigate which plant characters were responsible for the higher relative growth rate (RGR) of annuals as compared to perennials under these conditions. The nitrogen and carbon concentrations of shoot organs and of the whole plant were higher in annuals than in perennials. This was also the case for the specific absorption rate for nitrate and nitrogen productivity (on whole plant and leaf basis). The range of RGR displayed by the 14 species was large enough (0.15–0.33d−1) to examine the general relationships between RGR and the various parameters measured in the present study. RGR was positively related to plant, leaf blade and sheath nitrogen concentrations, but there was no relationship between RGR and any of the carbon concentrations. RGR also strongly correlated with specific absorption rate for nitrate and with nitrogen productivity. A new factorization of this latter parameter led to the definition of the ‘leaf nitrogen productivity’ (NLP), which is likely to depend on photosynthetic nitrogen use efficiency. RGR was shown to be strongly correlated with NLP, but not with the second term of the factorization, namely the proportion of plant nitrogen allocated to the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号