首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The filum terminale, or terminal portion of the spinal cord, was studied in normal adult frogs (Rana pipiens) by means of light and electron microscopy. Astroglial cells are the predominant elements in this region. The rostral portion of the filum terminale consists mainly of (1) a peripheral dense ring of myelinated and some unmyelinated nerve fibers, and processes of astrocytes terminating at the subpial space; (2) an intermediate zone, in which astrocytes are the main cellular elements in addition to a few degenerated neurons; and (3) a central region where the central canal is lined by dark and light ependymal cells. In the caudal portion of the filum terminale, the amount of neuropil is greatly reduced. This region is formed mainly by astrocytic glial cells and very few neuronal elements. The central canal in the caudal portion is located ventrally and contains a lining consisting almost exclusively of dark ependymal cells.  相似文献   

2.
Within the mammalian CNS, astrocytes appear to be a heterogeneous class of cells. To assay the number of distinct types of astrocytes in the rat spinal cord, cell lineage and phenotypic analyses were carried out on cultures from newborn rat spinal cord and five distinct types of astrocytes were observed. Proliferating precursors for each class of astrocyte were isolated by low density culture and shown to give rise to 5 distinct and morphologically homogeneous clusters of GFAP + astrocytes. Immunocytochemical analysis with antibodies A2B5 and Ran-2, which identify different glial lineages in optic nerve cultures, demonstrated that many clusters included both A2B5+ and A2B5- cells. Similarly, many clusters also possessed a mixture of Ran-2+ and Ran-2-cells, suggesting that in spinal cord cultures, in contrast to optic nerve cultures, expression of these antigens is regulated by individual cells rather than by cell lineage. Single-cell cloning studies, revealed that the abundance and proliferative capacity of individual astrocyte precursors differed depending on the type of astrocyte. To assay the effects of a complex cellular environment on the composition of astrocyte clones, lineage analysis was performed in complete spinal cord cultures using a replication deficient retrovirus. Although similar morphologically homogeneous clones of cells to those seen with single-cell clones were observed, the proliferative capacity and relative abundance of the distinct astrocyte precursors differed from that seen in single-cell cloning studies. Together these observations suggest that in spinal cord, gliogenesis is considerably more complex than in the optic nerve and that cultures of newborn rat spinal cord contain multiple, distinct populations of astrocytes.  相似文献   

3.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

4.
Summary Using traditional as well as whole-mount immunohistochemistry, we described the location of tyrosine hydroxylase-and dopamine beta hydroxylase-positive cells and fibers in the brain of the lizard Anolis carolinensis. Major catecholaminergic cell groups were in the ependyma in certain ventricular regions, alous coeruleus, anterior hypothalamic and lateral hypothalamic areas, and in the mesencephalic tegmental region, locus coeruleus, nucleus of the solitary tract, vagal motor nucleus, and rhombencephalic reticular formation. Major catecholaminergic fibers, tracts and varicosities included tuberohypophysial, mesolimbic, nigrostriatal, isthmocortical, medullohypothalamic, and coeruleospinal systems. Although the catecholaminergic systems in A. carolinensis are similar to those in the brains of other lizards studied, there are a few species differences. Our information about A. carolinensis will be used to help localize the hypothalamic asymmetry in catecholamine metabolism previously described in this lizard.  相似文献   

5.
Summary 1. Wobbler mice suffer an autosomal recessive mutation producing severe motoneuron degeneration and dense astrogliosis, with increased levels of glial fibrillary acidic protein (GFAP) in the spinal cord and brain stem. They have been considered animal models of amyotrophic lateral sclerosis and infantile spinal muscular atrophy. 2. Using Wobbler mice and normal littermates, we investigated the effects of the membrane-active steroid Lazaroid U-74389F on the number of GFAP-expressing astrocytes and glucocorticoid receptors (GR). Lazaroids are inhibitors of oxygen radical-induced lipid peroxidation, and proved beneficial in cases of CNS injury and ischemia. 3. Four days after pellet implantation of U-74389F into Wobbler mice, hyperplasia and hypertophy of GFAP-expressing astrocytes were apparent in the spinal cord ventral and dorsal horn, areas showing already intense astrogliosis in untreated Wobbler mice. In control mice, U-74389F also produced astrocyte hyperplasia and hypertophy in the dorsal horn and hyperplasia in the ventral-lateral funiculi of the cord. 4. Givenin vivo U-74389F did not change GR in spinal cord of Wobbler or control mice, in line with the concept that it is active in membranes but does not bind to GR. Besides, U-74390F did not compete for [3H]dexamethasone binding when addedin vitro. 5. The results suggest that stimulation of proliferation and size of GFAP-expressing astrocytes by U-74389F may be a novel mechanism of action of this compound. The Wobbler mouse may be a valuable animal model for further pharmacological testing of glucocorticoid and nonglucocorticoid steroids in neurodegenerative diseases.  相似文献   

6.
Summary Photosensitivity in the terminal abdominal ganglion (G5) of an anomuran, the squat lobsterGalathea strigosa (Crustacea, Decapoda, Anomura), is described. In contrast to the caudal photoreceptors (CPRs) of long-tailed natantid and macruran decapod crustaceans, the caudal photosensitive elements in G5 inG. strigosa apparently lack the conventional spiking rostral conduction pathways to the thoracic ganglia, and instead make their output connections to a bilateral pair of tonic flexor motoneurones originating within the caudal ganglion itself. These flexor motoneurones modulate the activity of two bilaterally paired uropod coxopodite tonic flexor muscles. This photomodulated motoneurone (PMMN) activity is not abolished by sectioning the abdominal nerve cord anterior to G5. The pattern of photosensitivity, while differing from that shown by other CPRs, resembles instead the pattern attributed to photosensitive interneurones (PSIs) of rostral abdominal ganglia of crayfish and other long-tailed decapod crustaceans.The caudal PSIs inG. strigosa appear to be involved in the postural control of the tail-fan as it is held flexed against the cephalothorax.  相似文献   

7.
Negative interactions between species can generate divergent selection that causes character displacement. However, other processes cause similar divergence. We use spatial and temporal replication across island populations of Anolis lizards to assess the importance of negative interactions in driving trait shifts. Previous work showed that the establishment of Anolis sagrei on islands drove resident Anolis carolinensis to perch higher and evolve larger toepads. To further test the interaction's causality and predictability, we resurveyed a subset of islands nine years later. Anolis sagrei had established on one island between surveys. We found that A. carolinensis on this island now perch higher and have larger toepads. However, toepad morphology change on this island was not distinct from shifts on six other islands whose Anolis community composition had not changed. Thus, the presence of A. sagrei only partly explains A. carolinensis trait variation across space and time. We also found that A. carolinensis on islands with previously established A. sagrei now perch higher than a decade ago, and that current A. carolinensis perch height is correlated with A. sagrei density. Our results suggest that character displacement likely interacts with other evolutionary processes in this system, and that temporal data are key to detecting such interactions.  相似文献   

8.
Origin of adrenergic fibres of vagus is studied. They are shown to appear in the thoracic vagus through caudal anastomosis introduction. The observations indicated that axons of spinal neurons and neurons of the ganglion stellate passed through caudal anastomosis and entered a thoracic vagus nerve. Stimulation of the thoracic vagus in cats after atropine sulphate injection increases the heart rate.  相似文献   

9.
Summary Photoperiod plays an important role in controlling the annual reproductive cycle of the male lizard Anolis carolinensis. The nature of photoperiodic time measurement in Anolis was investigated by exposing anoles to 3 different kinds of lighting paradigms (resonance, T cycles, and night breaks) to determine if photoperiodic time measurement involves the circadian system. Both the reproductive response and the patterns of entrainment of the activity rhythm were assessed. The results show that the circadian system is involved in photoperiodic time measurement in this species and that a discrete photoinducible phase resides in the latter half of the animals' subjective night. Significantly, the ability of the circadian system to execute photoperiodic time measurement is crucially dependent on the length of the photoperiod. Resonance, T cycle and night break cycles utilizing a photoperiod 10–11 h in duration reveal circadian involvement whereas these same cycles utilizing 6 or 8 h photoperiods do not.Abbreviation CRPP circadian rhythm of photoperiodic sensitivity  相似文献   

10.
Sympathetic preganglionic neurons and interneurons are closely apposed (presumably synapsed upon) by corticospinal tract (CST) axons. Sprouting of the thoracic CST rostral to lumbar spinal cord injuries (SCI) substantially increases the incidence of these appositions. To test our hypothesis that these additional synapses would increase CST control of sympathetic activity after SCI, we measured the effects of electrical stimulation of the CST on renal sympathetic nerve activity (RSNA) and arterial pressure (AP) in alpha-chloralose-anesthetized rats with either chronically intact or chronically lesioned spinal cords. Stimuli were delivered to the CST at intensities between 25-150 muA and frequencies between 25 and 75 Hz. Stimulation of the CST at the midcervical level decreased RSNA and AP. These decreases were not mediated by direct projections of the CST to the thoracic spinal cord because we could still elicit them by midcervical stimulation after acute lesions of the CST at caudal cervical levels. In contrast, caudal thoracic CST stimulation increased RSNA and AP. Neither the responses to cervical nor thoracic stimulation were affected by chronic lumbar SCI. These data show that the CST mediates decreases in RSNA via a cervical spinal system but excites spinal sympathetic neurons at caudal thoracic levels. Because chronic lumber spinal cord injury affected responses evoked from neither the cervical nor thoracic CST, we conclude that lesion-induced or regeneration-induced formation of new synapses between the CST and sympathetic neurons may not affect cardiovascular regulation.  相似文献   

11.
Introduced species can have a variety of effects on the behavior and ecology of native species. We compared display behavior and habitat use of introduced Anolis sagrei and native Anolis carolinensis lizards across three sites in Southern Louisiana. The chosen sites were similar in that they were all located in urban settings with clumped vegetation. The first site contained only A. sagrei, the second supported sympatric A. sagrei and A. carolinensis populations, and the third site harbored only A. carolinensis. We found that (1) A. carolinensis perched significantly higher when A. sagrei was present, consistent with previous studies, whereas perch height of A. sagrei was not altered by the presence of A. carolinensis; (2) A. carolinensis in single and mixed sites exhibited different proportions of display types, with individuals at the mixed Tulane site performing significantly more C displays than those at the single site; and (3) Anolis sagrei at the Tulane mixed site exhibited less push‐ups than those in the site with A. sagrei alone. These data suggest that the arrival of congeners can affect display behavior of anoles, although such effects are different for the natives and the invaders.  相似文献   

12.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Summary The distribution of immunoreactive arginine vasotocin (AVT-ir) was determined in the brain of the lizard Anolis carolinensis. Cells and fibers containing AVT-ir were found in the medial septal region, lamina terminalis, lateral forebrain bundle, preoptic area, supraoptic nucleus, anterior hypothalamus, paraventricular nucleus, periventricular nucleus, arcuate nucleus, and ventromedial nucleus of the thalamus. Occasional AVT-ir cells were found in the interpeduncular nucleus. Fibers containing AVT-ir were found in the cortex, around the olfactory ventricle, in the diagonal band of Broca, amygdala area, dorsal ventricular ridge, striatum, nucleus accumbens, septum, ventromedial hypothalamus, lateral hypothalamus, medial forebrain bundle, median eminence, pars nervosa, nucleus of the solitary tract, locus coeruleus, cerebellar cortex (granular layer), dorsal part of the nucleus of the lateral lemniscus, substantia nigra, and myelencephalon. The intensity of AVT-ir staining was, in general, greater in males than in females. Comparison of AVT-ir distribution in A. carolinensis with those previously published for other reptilian species revealed species-specific differences in distribution of AVT.  相似文献   

14.
The stellate cell in the pars distalis of Anolis carolinensis has been studied with the electron microscope. This cell type is characterized by the lack of secretory granules, and it possesses elongate processes that insert between secretory cells. Few cytoplasmic filaments are present in these processes, and desmosomes linking them to adjacent stellate cells or to secretory cells are seen infrequently in control animals. Stellate cells are often encountered in the caudal half of the pars distalis, but they are less commonly found in the rostral half. In animals undergoing thyroidal depression, thyroidectomy cells arise in the caudal pars distalis. Concurrently, stellate cells of that region hypertrophy and exhibit increased numbers of desmosomes, complex intercellular junctions, and micropinocytotic vesicles. Injected horseradish peroxidase penetrates the intercellular spaces, enters the micropinocytotic vesicles, and is transported to the interior of the stellate cell. It is suggested that stellate cells in Anolis under certain conditions may transport materials between the bloodstream and secretory cells.  相似文献   

15.
Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.  相似文献   

16.
Research on the caudal spinal cord (SC) of three young and three adult tuataras (Sphenodon punctatus) has revealed that most of the glial cells were well differentiated as astrocytes and oligodendrocytes. The former type was not completely differentiated 3 months post-hatching, but was the main glial cell type at the age of 1 yr and in adulthood. Smaller numbers of oligodendrocytes were found in the white matter of adult animals than fibrous astrocytes. It was concluded that during growth, there is a progressive decrease in the dark, basophilic and electron-dense glioblasts, most of which develop as astrocytes.  相似文献   

17.
Summary The distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-IR) neurons in the lower medulla oblongata and the spinal cord has been analyzed in guinea pigs. This study includes results obtained by colchicine treatment and transection experiments. In the spinal cord, numerous VIP-IR varicosities were observed in the substantia gelatinosa of the columna dorsalis; some were also found in the substantia intermedia and the columna anterior. The spinal VIP-IR nerve fibers were mainly of intraspinal origin and oriented segmentally. VIP-IR nuclei in the spinal cord extended dorsally into corresponding regions of the caudal medulla oblongata, namely from the substantia intermedia medialis and lateralis into the vagus-solitarius complex and from the nucleus spinalis lateralis into the area of the nucleus reticularis lateralis. Additional VIP-IR perikarya were observed in the pars caudalis of the nucleus spinalis nervi trigemini. The VIP-IR nuclei within the caudal medulla oblongata probably form a continuous system with those localized within the spinal cord. They may be involved functionally in the modulation of cardiovascular and respiratory regulation in the guinea pig.Supported by the DFG, Carvas SFB 90  相似文献   

18.
Increased proliferation activity in the central canal ependyma of adult rodent spinal cord was described after injury and is thought to participate in recovery processes. Proliferation activity is scarce under physiological conditions, but still could be of importance, as in vitro studies showed that the spinal cord ependyma is an internal source of neural stem cells. Data from these studies indicate that there are regional differences in the distribution of proliferation activity along the rostro-caudal axis. We analyzed the proliferation activities in the ependyma within the entire extent of intact adult rat spinal cord. To identify proliferating cells we performed immunohistochemistry either for cell cycle S-phase marker BrdU or for the nuclear protein Ki-67. BrdU and Ki-67 positive cells were counted on sections selected from four spinal cord regions — cervical, thoracic, lumbar and sacral/coccygeal. Analysis showed that the number of BrdU positive cells within the ependyma was very low in all subdivisions of the spinal cord. Both BrdU and Ki-67 labeling revealed a significantly higher number of proliferating cells in the ependyma of sacrococcygeal part in comparison to all other spinal cord regions, suggesting that the caudal spinal cord might have potentially higher regeneration capacity compared to more rostral parts.  相似文献   

19.
The effects of X irradiation on oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells derived from different regions of the perinatal central nervous system (CNS) of rats were investigated in vitro. The O-2A progenitor cells can differentiate into either oligodendrocytes or type-2 astrocytes. The depletion of these cells could lead to demyelination, seen as a delayed reaction after irradiation of the CNS in vivo. To quantify cell survival, O-2A progenitor cells were grown on monolayers of type-1 astrocytes. Monolayers of type-1 astrocytes stimulate O-2A progenitor cells to divide. O-2A progenitor cells were irradiated in vitro and clonogenic cell survival was measured. The O-2A progenitor cells derived from perinatal optic nerve were quite radiosensitive in contrast to O-2A progenitor cells derived from perinatal spinal cord and perinatal corpus callosum. Furthermore, O-2A progenitor cells derived from the optic nerve formed smaller colonies, with most colonies showing early differentiation into oligodendrocytes. In contrast, more than half of the colonies derived from corpus callosum did not show any differentiation after 2 weeks in vitro and kept growing. These differences support the view that perinatal O-2A progenitor cells derived from the optic nerve are committed progenitor cells while the O-2A progenitor cells derived from the perinatal corpus callosum and the perinatal spinal cord have more stem cell properties.  相似文献   

20.
This study provides a morphometric data set of body segments that are biomechanically relevant for locomotion in two ecomorphs of adult male anoles, namely, the trunk‐ground Anolis sagrei and the trunk‐crown Anolis carolinensis. For each species, 10 segments were characterized, and for each segment, length, mass, location of the center of mass, and radius of gyration were measured or calculated, respectively. The radii of gyration were computed from the moments of inertia by using the double swing pendulum method. The trunk‐ground A. sagrei has relatively longer and stockier hindlimbs and forelimbs with smaller body than A. carolinensis. These differences between the two ecomorphs demonstrated a clear relationship between morphology and performance, particularly in the context of predator avoidance behavior, such as running or jumping in A. sagrei and crypsis in A. carolinensis. Our results provide new perspectives on the mechanism of adaptive radiation as the limbs of the two species appear to scale via linear factors and, therefore, may also provide explanations for the mechanism of evolutionary changes of structures within an ecological context. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号