首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perutz & Brunori (1982) proposed that the COOH-terminal His and Ser F9 of the beta-chains of fish and amphibian hemoglobins are responsible for their Root effect and part of their alkaline Bohr effect. Analysis of the kinetics of carbon monoxide binding by hemoglobin from the tadpole of Xenopus laevis supports that model and suggests an explanation for the absence of an alkaline Bohr effect in many aquatic Anura and Urodela.  相似文献   

2.
The kinetics of nitrate inhibition of carbon tetrachloride (CT) transformation were examined using a denitrifying consortium. Comparison of data from fed-batch experiments to the model reported by Hooker et al. indicate that the inhibition constant ranges between 3.2 and 21 mg/L, with an average of 8.8 mg/L. This range is much lower than the previously reported value of 169 mg/L. Simulations using the corrected parameter accurately reflect this new data and the data reported by Hooker et al. In contrast, the earlier reported coefficient value does not reflect the data reported in this work. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecular kinetics; the second order rate constant using the cyanide complex of the enzyme is 1.5 x 10(6) M-1 s-1, for the enzyme in detergent, and slightly higher for COV. In the case of COV the kinetics are not affected by the addition of ionophores. Upon mixing fully reduced cytochrome oxidase with oxygen (in the presence of excess reductants), the oxidation leading to the pulsed enzyme is followed by a steady state phase and (eventually) by complete re-reduction. When the concentrations of dioxygen and oxidase are sufficiently low (micromolar range), the time course of oxidation can be resolved by stopped flow at room temperature, yielding an apparent bimolecular rate constant of 5 x 10(7) M-1 s-1. After exhaustion of oxygen and end of steady state, re-reduction of the pulsed enzyme by the excess Ru(II) is observed; the concentration dependence shows that the rate of re-reduction is limited at 3 s-1 in detergent; this limiting value is assigned to the intramolecular electron transfer process from cytochrome a-Cua to the binuclear center. Using the reconstituted enzyme, the internal electron transfer step is sensitive to ionophores, increasing from 2-3 to 7-8 s-1 upon addition of valinomycin and carbonyl cyanide m-chlorophenylhydrazone. This finding indicates for the first time an effect of the electrochemical potential across the membrane on the internal electron transfer rate; the results are compared with expectations based on the hypothesis formulated by Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), and their bioenergetic relevance is discussed with reference to the proton pumping activity of the enzyme.  相似文献   

4.
The kinetics of reaction of singly reduced methemoglobin (HbFe3(3+)Fe2+) with carbon monoxide have been investigated by the pulse radiolysis method. The rate constant for carbon monoxide binding to this form of hemoglobin is 4.1 X 10(6) M-1 S-1 at 24 degrees in our solutions. This value compares with existing values for various forms of hemoglobin ranging from 4 X 10(6) to 6.5 X 10(6) M-1 S-1. Addition of inositol hexaphosphate to the solutions results in a lower rate constant for carbon monoxide binding amounting to 1.1 X 10(5) M-1 S-1.  相似文献   

5.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

6.
The carbon monoxide binding equilibria and kinetics of a number of molluscan and arthropodal hemocyanins have been investigated employing the visible luminescence of the carbon monoxide-copper complex.Proteins from both phyla, in oligomeric and monomeric form, bind carbon monoxide non-co-operatively; the reaction is largely enthalpy driven is associated with a small unfavourable entropy change.Molluscan hemocyanins display a carbon monoxide affinity (p50 = 1 to 10mm Hg) higher than that of arthropodal hemocyanins (p50 = 100 to 700mm Hg), and only Panulirus interruptus hemocyanin, among those studied here, exhibits a small Bohr effect. The observed differences in equilibrium constant are kinetically reflected in differences in the carbon monoxide dissociation rate constant, which ranges from 20 to 70 s?1 for molluscan hemocyanins and from 200 to 9000 s?1 for arthropodal hemocyanins; on the other hand the differences in the combination rate constants between the two phyla are considerably smaller. A comparison of the equilibrium and kinetic results shows some discrepancies between the two sets of data, suggesting that carbon monoxide binding may be governed by a complex mechanism.The correlation between the ligand binding properties and the stereochemistry of the active site is discussed in the light of the knowledge that, while oxygen is bound to both copper atoms in a site, carbon monoxide is a “non-bridging” ligand, being bound to only one of the metals.  相似文献   

7.
The substrate-dependent kinetics of the carbon monoxide-inhibited cytochrome P-450 activity and its light reversibility is reinvestigated in microsomal preparations. In order to find out whether the substrate specificity is mediated by an isoenzyme-specific binding of carbon monoxide with different dissociation constants an experimental design has been chosen where it could be established that essentially the same isoenzyme component was involved in two different monooxygenase reactions, i.e., the O-dealkylation of 7-ethoxycoumarin and the 7-hydroxylation of coumarin. The dissociation constant kD(CO) of the ferrous cytochrome P-450 carbon monoxide complex is 6-fold higher in the presence of 7-ethoxycoumarin than in the presence of coumarin. But the light-induced relative changes of the Warburg partition coefficient for the 7-ethoxycoumarin deethylation and for coumarin 7-hydroxylation do not differ remarkably from each other. These relative changes are shown to represent the ratio of the photoinduced rate constant to the spontaneous rate constant of the dissociation for the ferrous cytochrome P-450 carbon monoxide complex. The differences in the dissociation constants are assigned to substrate specific effects on the carbon monoxide binding, indicating a substrate-specific change of the free binding enthalpy for carbon monoxide.  相似文献   

8.
Reaction of Oxyhemoglobin with Carbon Monoxide   总被引:1,自引:0,他引:1       下载免费PDF全文
The reaction of oxyhemoglobin and carbon monoxide was studied kinetically at pH 7.8 in a variety of suspending media. The dielectric constant of the suspending media, as well as the viscosity (and hence the Fick diffusion coefficients), was varied with the use of glycine, glycerol, and sucrose. The results showed that the reaction was unaltered by the various additions to the media, provided that the pO2 and the concentration of carbon monoxide were held constant. Since the concentration of oxygen varies from medium to medium at constant pO2 while the pCO varies at constant concentration of carbon monoxide, the differences in the reactions with oxygen and carbon monoxide were emphasized. The lack of variation of the rate constants with changes in dielectric constant can be interpreted as indicating that electrostatic effects are unimportant in this reaction.  相似文献   

9.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

10.
The kinetics of cytochrome oxidase reconstituted into small phospholipid vesicles (COV) has been followed by transient optical spectroscopy under steady-state and pre-steady-state conditions, in the presence and absence of ionophores. The effect of valinomycin on the activity of reconstituted cytochrome oxidase is shown to depend on the absolute concentration of the ionophore and on the number of turnovers elapsed by the enzyme; this novel observation, which escaped previous investigations, may account for important differences in results and therefore in interpretation of the mechanism of control of the enzyme activity as between Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), Gregory and Ferguson-Miller (Gregory, L., and Ferguson-Miller, S. (1989) Biochemistry 28, 2655-2662) and Capitanio et al. (Capitanio, N., De Nitto, E., Villani, G., Capitanio, G., and Papa, S. (1990) Biochemistry 29, 2939-2944). Quantitative analysis of the optical spectra acquired within 10 ms over a large wavelength and time range (500-650 nm and 5 ms to 60 s) under different experimental conditions, indicates that the electrical component of the transmembrane electrochemical gradient controls the rate of the internal electron transfer from cytochrome a-CuA to cytochrome a3-CuB as well as the cytochrome c to cytochrome a electron transfer. The slow down of cytochrome oxidase activity observed in the presence of valinomycin after several (greater than 10) turnovers is attributed to alkalinization of the vesicle interior, which affects the internal electron transfer rate. These two mechanisms of control act most likely independently. A "cubic scheme," which illustrates the effect of the electrochemical gradient on two states of cytochrome oxidase characterized by different redox and proton pumping activities is presented and discussed.  相似文献   

11.
12.
Three different models: the unstructured mechanistic black-box model, the input–output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249–258 (2004); Zelić et al. Eng Life Sci 3:299–305 (2003); Zelić et al Biotechnol Bioeng 85:638–646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.  相似文献   

13.
The Model presented in this work demonstrates the combination of cell-cycle model with a model describing the growth and conversion kinetics of hybridoma cells in a steady-state continuous culture. The cell-cycle model is based upon a population balance model as described by Cazzador et al. and assumes the existence of a cycling-and apoptotic-cell population, which together form the viable-cell population. In this part the fraction of apoptotic cells, the age distribution of the cycling and apoptotic-cell population, the mean volume and biomass content per cell of the cycling, apoptotic, and viable cells, and the specific growth and death rates of the cells are calculated. The metabolic part consists of a Monod-type growth equation, four elemental balances, an equation assuming a constant yield of ammonia on glutamine, an equation for product formation, and the relation of Glacken for energy production. Furthermore, a maintenance-energy model for the consumption of glucose and glutamine is introduced, which combines the approaches of Herbert and Pirt into one model in a way similar to Beeftink et al. For energy consumption a Pirt model is assumed. The model is capable of predicting trends in steady-state vaues of a large number of variables of interest like specific growth rate, specific death rate, viability, cell numbers, mean viable-cell volume, and concentrations and conversion rates of product, glucose, glutamine, lactate, and ammonia. Also the concentrations and conversion rates of oxygen and carbon dioxide are qualitatively predicted. The values of the model predictions are generally close to experimental data obtained from literature. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
The kinetics of carbon monoxide binding following fast reduction of the valency hybrids alpha2+betaCO2 and alphaCO2beta+2 by hydrated electrons have been studied at different degrees of reduction. The results show that at pH 6.0 and 7.0 reduction of one heme group yields a species which reacts fast with carbon monoxide (rate constant of the order of 10(6) M-1S-1). At pH 6.0 the intermediates alphaCO2beta2 and alpha2betaCO2 bind carbon monoxide with a rate characteristic of the T state. At pH 7.0 alphaCO2beta2 is for the greater part in the T state, while in the case of alpha2betaCO2 the R and the T state are about equally populated.  相似文献   

15.
The most common approach for estimating substrate rate of appearance (R(a)) is use of the single-pool model first proposed by R. W. Steele, J. S. Wall, R. C. DeBodo, and N. Altszuler. (Am. J. Physiol. 187: 15-24, 1956). To overcome the model error during highly non-steady-state conditions due to the assumption of a constant volume of distribution (V), two strategies have been proposed: 1) use of a variable tracer infusion rate to minimize tracer-to-tracee ratio (TTR) variations (fixed-volume approach) or 2) use of two tracers of the same substrate with one infused at a constant rate and the other at a variable rate (variable-volume approach or approach of T. Issekutz, R. Issekutz, and D. Elahi. Can. J. Physiol. Pharmacol. 52: 215-224, 1974). The goal of this study was to compare the results of these two strategies for the analysis of the kinetics of glycerol and glucose under the non-steady-state condition created by a constant infusion of epinephrine (50 ng. kg(-1). min(-1)) with the traditional approach of Steele et al., which uses a constant infusion and fixed volume. The results showed that for glucose and glycerol the estimates of R(a) obtained with the constant and the variable tracer infusion rate and the equation of Steele et al. were comparable. The variable tracer infusion approach was less sensitive to the choice of V in estimating R(a) for glycerol and glucose, although the advantage of changing the tracer infusion rate was greater for glucose than for glycerol. The model of Issekutz et al. showed instability when the ratio TTR(1)/TTR(2) approaches a constant value, and the model is more sensitive to measurement error than the constant-volume model for glucose and glycerol. We conclude that the one-tracer constant-infusion technique is sufficient in most cases for glycerol, whereas the one-tracer variable-infusion technique is preferable for glucose. Reasonable values for glucose R(a) can be obtained with the constant-infusion technique if V = 145 ml/kg.  相似文献   

16.
In this issue of Free Radical Biology & Medicine, Zabalgoitia et al. show that IL-18-dependent cell death of human microvascular endothelial cells (EC) is due to activation of p38alpha and NF-kappaB and suppression of p38beta activity. Most interestingly, IL-18 and heme oxygenase-1 (HO-1) activities appear to oppose each other in these cells. IL-18 suppresses HO-1, an effect that is mediated by instability of the HO-1 mRNA. Though the contribution of HO-1 metabolites remains somewhat a mystery, treatment with carbon monoxide releasing molecules (CORMs) also induces these same effects, implicating carbon monoxide (CO) as a major player. HO-1 and CO act to suppress IL-18-mediated activation of p38alpha and to restore p38beta activity, which is suppressed by IL-18. Furthermore, HO-1 and CO suppress NF-kappaB activation by IL-18. This suppression of NF-kappaB reduces levels of PTEN which relieves IL-18-mediated suppression of Akt activity. Thus, HO-1 and CO oppose multiple proinflammatory and pro-cell death effects of IL-18 in human microvascular endothelial cells. The results of this study imply that induction of HO-1 or application of CORMs should be protective to the microvascular endothelium. Clinical trials to test the effects of CORMs in pulmonary inflammation are ongoing. The study by Zabalgoitia et al. provides mechanistic information pertaining to the homeostatic balance of IL-18 and HO-1 activities and may be useful for designing new clinical studies and for interpretation of data from ongoing studies.  相似文献   

17.
X-ray crystallographic studies [Ogata et al., J. Am. Chem. Soc. 124 (2002) 11628-11635] have shown that carbon monoxide binds to the nickel ion at the active site of the [NiFe] hydrogenase from Desulfovibriovulgaris Miyazaki F and inhibits its catalytic function. In the present work spectroscopic aspects of the CO inhibition for this bacterial organism are reported for the first time and enable a direct comparison with the existing crystallographic data. The binding affinity of each specific redox state for CO is probed by FTIR spectro-electrochemistry. It is shown that only the physiological state Ni-SIa reacts with CO. The CO-inhibited product state is EPR-silent (Ni2+) and exists in two forms, Ni-SCO and Ni-SCOred. At very negative potentials, the exogenous CO is electrochemically detached from the active site and the active Ni-R states are obtained. At temperatures below 100 K, photodissociation of the extrinsic CO from the Ni-SCO state results in Ni-SIa that is identified to be the only light-induced state. In the dark, rebinding of CO takes place; the recombination rate constants are of biexponential character and the activation barrier is determined to be approximately 9 kJ mol−1. In addition, formation of a paramagnetic CO-inhibited state (Ni-CO) was observed that results from the interaction of carbon monoxide with the Ni-L state. It is proposed that the nickel in Ni-CO is in a formal monovalent state (Ni1+).  相似文献   

18.
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.  相似文献   

19.
In this paper, we further develop the general theory of microdialysis by extending the linear model of Bungay et al. to provide a theoretical basis for in vitro and in vivo microdialysis. Specifically, we considered the effect of active clearance processes on in vivo microdialysis, and thereby elaborated the theory of Benveniste et al. to endogenous compounds. We examined the use of steady state tissue diffusion resistance with negligible clearance processes to interpret microdialysis data. The influence of the tissue properties on the in vitro and in vivo recoveries in dual-probe microdialysis was analyzed and we simulated the effect of the operating parameters on dual probe microdialysis performance. We estimated that the minimum clearance rate constant detectable by microdialysis in a quasi-steady state is about 5.5 x 10(-5) s(-1). This minimum rate constant establishes a criterion, below which inhibition of the active clearance processes does not show detectable influences on the microdialysis extraction efficiency.  相似文献   

20.
Using the double mixing method we have studied the reactions of the partially liganded species (Hb4, Hb4L1, Hb4L2, Hb4L3) of normal human hemoglobin with carbon monoxide. In the first mixing, oxygen is removed from the species Hb4(O2) chi (CO) gamma and at the second mixing the species Hb4(CO) gamma reacts with CO. At 90% saturation of oxyHb with CO the main intermediate species are Hb4(CO)3 and Hb4(CO)2, and at 10% saturation Hb4 and Hb4(CO). The four CO-combination rate constants determined are: l'1 = 1 X 10(5) M-1 S-1, l'2 = 7 X 10(5) M-1 S-1, l'3 = 2 X 10(5) M-1 S-1 and l'4 = 4.8 X 10(6) M-1 S-1. The results indicate that there is no monotonic increase in the successive CO-combination rate constants. It is difficult to explain these results on the basis of the two-state model (Monod et al., 1965) or the stereochemical model of Perutz (1970).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号