首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.  相似文献   

2.
3.
The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.  相似文献   

4.
Motility of nerve growth cones (GCs) is regulated by region-specific activities of cell adhesion molecules (CAMs). CAM activities could be modified by their localization to detergent-resistant membranes (DRMs), specialized microdomains enriched in signaling molecules. This paper deals with a question of whether DRMs are involved in GC migration stimulated by three CAMs; L1, N-cadherin (Ncad), and beta1 integrin. We demonstrate that L1 and Ncad are present in DRMs, whereas beta1 integrin is exclusively detected in non-DRMs of neurons and that localization of L1 and Ncad to DRMs is developmentally regulated. GC migration mediated by L1 and Ncad but not by beta1 integrin is inhibited after DRM disruption by micro-scale chromophore-assisted laser inactivation (micro-CALI) of GM1 gangliosides or by pharmacological treatments that deplete cellular cholesterol or sphingolipids, essential components for DRMs. Characteristic morphology of GCs induced by L1 and Ncad is also affected by micro-CALI-mediated DRM disruption. Micro-CALI within the peripheral domain of GCs, or even within smaller areas such as the filopodia and the lamellipodia, is sufficient to impair their migration. However, micro-CALI within the central domain does not affect GC migration. These results demonstrate the region-specific involvement of DRMs in CAM-dependent GC behavior.  相似文献   

5.
This study shows that L1-like adhesion (LAD-1), the sole Caenorhabditis elegans homologue of the L1 family of neuronal adhesion molecules, is required for proper development of the germline and the early embryo and embryonic and gonadal morphogenesis. In addition, the ubiquitously expressed LAD-1, which binds to ankyrin-G, colocalizes with the C. elegans ankyrin, UNC-44, in multiple tissues at sites of cell-cell contact. Finally, we show that LAD-1 is phosphorylated in a fibroblast growth factor receptor (FGFR) pathway-dependent manner on a tyrosine residue in the highly conserved ankyrin-binding motif, FIGQY, which was shown previously to abolish the L1 family of cell adhesion molecule (L1CAM) binding to ankyrin in cultured cells. Immunofluorescence studies revealed that FIGQY-tyrosine-phosphorylated LAD-1 does not colocalize with nonphosphorylated LAD-1 or UNC-44 ankyrin but instead is localized to sites that undergo mechanical stress in polarized epithelia and axon-body wall muscle junctions. These findings suggest a novel ankyrin-independent role for LAD-1 related to FGFR signaling. Taken together, these results indicate that L1CAMs constitute a family of ubiquitous adhesion molecules, which participate in tissue morphogenesis and maintaining tissue integrity in metazoans.  相似文献   

6.
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.  相似文献   

7.
Zhou S  Opperman K  Wang X  Chen L 《Genetics》2008,180(3):1429-1443
The L1 family of single-pass transmembrane cell adhesion molecules (L1CAMs) is conserved from Caenorhabditis elegans and Drosophila to vertebrates and is required for axon guidance, neurite outgrowth, and maintenance of neuronal positions. The extracellular region of L1CAMs mediates cell adhesion via interactions with diverse cell-surface and extracellular matrix proteins. In contrast, less is known regarding the function of the intracellular domains in the L1CAM cytoplasmic tail. Previously, we identified a role of the C. elegans L1CAM homolog, SAX-7, in maintaining neuronal and axonal positioning. Here, we demonstrate that this function is dependent on three conserved motifs that reside in the SAX-7 cytoplasmic tail: (1) the FERM-binding motif, (2) the ankyrin-binding domain, and (3) the PDZ-binding motif. Furthermore, we provide molecular and genetic evidence that UNC-44 ankyrin and STN-2 γ-syntrophin bind SAX-7 via the respective ankyrin-binding and PDZ-binding motifs to regulate SAX-7 function in maintaining neuronal positioning.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2725-2732
It has recently become clear that both extracellular matrix (ECM) glycoproteins and various cell adhesion molecules (CAMs) can promote neurite outgrowth from primary neurons, though little is known of the intracellular mechanisms through which these signals are transduced. We have previously obtained evidence that protein kinase C function is an important part of the neuronal response to laminin (Bixby, J.L. 1989. Neuron. 3:287-297). Because such CAMs as L1 (Lagenauer, C., and V. Lemmon. 1987. Proc. Natl. Acad. Sci. USA. 84:7753-7757) and N-cadherin (Bixby, J.L. and R. Zhang. 1990. J. Cell Biol. 110:1253-1260) can be purified and used as substrates to promote neurite growth, we have now tested whether the response to CAMs is similarly dependent on protein kinase C. We find that inhibition of protein kinase C inhibits growth on fibronectin or collagen as well as on laminin. In contrast, C kinase inhibition actually potentiates the initial growth response to L1 or N- cadherin. The later "phase" of outgrowth on both of these CAMs is inhibited, however. Additionally, phorbol esters, which have no effect on neurite growth when optimal laminin concentrations are used, potentiate growth even on optimal concentrations of L1 or N-cadherin. The results indicate that different intracellular mechanisms operate during initial process outgrowth on ECM substrates as compared to CAM substrates, and suggest that protein kinase C function is required for continued neurite growth on each of these glycoproteins.  相似文献   

9.
Schwann cells have a unique role in regulating the growth of axons during regeneration and presumably during development. Here we show that Schwann cells are the best substrate yet identified for promoting process growth in vitro by peripheral motor neurons. To determine the molecular interactions responsible for Schwann cell regulation of axon growth, we have examined the effects of specific antibodies on process growth in vitro, and have identified three glycoproteins that play major roles. These are the Ca2+-independent cell adhesion molecule (CAM), L1/Ng-CAM; the Ca2+-dependent CAM, N-cadherin; and members of the integrin extracellular matrix receptor superfamily. Two other CAMs present on neurons and/or Schwann cells-N-CAM and myelin-associated glycoprotein-do not appear to be important in regulating process growth. Our results imply that neuronal growth cones use integrin-class extracellular matrix receptors and at least two CAMs--N-cadherin and L1/Ng-CAM-for growth on Schwann cells in vitro and establish each of these glycoproteins as a strong candidate for regulating axon growth and guidance in vivo.  相似文献   

10.
Neural cell adhesion molecules (CAMs) of the immunoglobulin superfamily engage in multiple neuronal interactions that influence cell migration, axonal and dendritic projection, and synaptic targeting. Their downstream signal transduction events specify whether a cell moves or projects axons and dendrites to targets in the brain. Many of the diverse functions of CAMs are brought about through homophilic and heterophilic interactions with other cell surface receptors. An emerging concept is that CAMs act as coreceptors to assist in intracellular signal transduction, and to provide cytoskeletal linkage necessary for cell and growth cone motility. Here we will focus on new discoveries that have revealed novel coreceptor functions for the best-understood CAMs--L1, CHL1, and NCAM--important for neuronal migration and axon guidance. We will also discuss how dysregulation of CAMs may also bear on neuropsychiatric disease and cancer.  相似文献   

11.
L1CAM     
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.  相似文献   

12.
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.  相似文献   

13.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia.  相似文献   

14.
Mammalian L1 and avian Ng‐CAM are homologous neural cell adhesion molecules (CAMs) that promote neurite outgrowth and cell adhesion in most neurons. Previous attempts to map these activities to discrete regions in the CAMs have suggested the involvement of a variety of different domains. However, these studies mainly used bacterially expressed proteins that were much less active on a molar basis than the native molecules. To define regions that are critical for maximal neurite outgrowth, we constructed and tested a panel of eukaryotically expressed proteins containing various extracellular segments of human L1 (hL1) or Ng‐CAM. Our results indicate that Ig domains 1–4 of hL1 are critical for homophilic binding and neurite outgrowth; however this segment is less potent than the entire extracellular region. Optimal neurite outgrowth activity was seen with proteins containing all six Ig domains of hL1 or Ng‐CAM. The adhesive properties of hL1 fragments correlated tightly with their neurite outgrowth activities, suggesting that these two processes are closely linked. These results suggest that Ig domains 1–4 form a structural cassette responsible for hL1 homophilic binding, while Ig domains 1–6 represent a functional region for optimal promotion of neurite outgrowth in vitro and possibly in vivo. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 287–302, 2000  相似文献   

15.
Esch  Teresa  Lemmon  Vance  Banker  Gary 《Brain Cell Biology》2000,29(3):215-223
A fundamental step in neuronal development is the acquisition of a polarized form, with distinct axons and dendrites. Although the ability to develop a polarized form appears to be largely an intrinsic property of neurons, it can be influenced by environmental cues. For example, in cell cultures substrate and diffusible factors can enhance and orient axonal development. In this study we examine the effects of growth on each of two cell adhesion molecules (CAMs), NgCAM and N-cadherin, on the development of polarity by cultured hippocampal neurons. We find that although the same pattern of development occurs on control substrates and the CAMs, the CAMs greatly accelerate the rate and extent of development of axons—axons form sooner and grow longer on the CAMs than on the control substrate. In contrast, the CAMs have opposite effects on dendritic development—N-cadherin enhances, but NgCAM reduces dendritic growth compared to control. These results provide further evidence that the development of polarity is largely determined by a cell-autonomous program, but that environmental cues can independently regulate axonal and dendritic growth.  相似文献   

16.
The L1 family of cell adhesion molecules (L1CAMs) is important for neural development. Mutations in one of the human L1CAM genes, L1, can result in several neurological syndromes, the symptoms of which are variably penetrant. The physiological cause of these symptoms, collectively termed CRASH, is not clear. Caenorhabditis elegans animals genetically null for the L1CAM homologue LAD-1, exhibit variably penetrant pleiotropic phenotypes that are similar to the CRASH symptoms; thus the C. elegans lad-1 mutant provides an excellent model system to study how disruption of L1 leads to these abnormalities. These phenotypes include uncoordinated movements, variable embryonic lethality, and abnormal neuronal distribution and axon trajectories. Our analysis revealed that many of these phenotypes are likely a result of tissue detachment.  相似文献   

17.
Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.  相似文献   

18.
Cell adhesion molecule (CAM) expression is highly regulated during nervous system development to control cell migration, neurite outgrowth, fasciculation, and synaptogenesis. Using electrical stimulation of mouse dorsal root ganglion (DRG) neurons in cell culture, this work shows that N-cadherin expression is regulated by neuronal firing, and that expression of different CAMs is regulated by distinct patterns of neural impulses. N-cadherin was down-regulated by 0.1 or 1 Hz stimulation, but NCAM mRNA and protein levels were not altered by stimulation. L1 was down-regulated by 0.1 Hz stimulation, but not by 0.3 Hz, 1 Hz, or pulsed stimulation. N-cadherin expression was lowered with faster kinetics than L1 (1 vs. 5 days), and L1 mRNA returned to higher levels after terminating the stimulus. The RSLE splice variant of L1 was not regulated by action potential stimulation, and activity-dependent influences on L1 expression were blocked by target-derived influences. The results are consistent with changes in firing pattern accompanying DRG development and suggest that functional activity can influence distinct developmental processes by regulating the relative abundance of different CAMs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 735–748, 1997
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    19.
    Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell-cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co-expression of ALCAM by activated monocytes and endothelial cells.  相似文献   

    20.
    Leukocyte infiltration is a hallmark of the atherosclerotic lesion. These cells are captured by cellular adhesion molecules (CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule (PECAM), and E-selectin, on endothelial cells (EC). We examined the role of the actin cytoskeleton in tumor necrosis factor-alpha (TNF-alpha)-induced translocation of CAMs to the cell surface. Human aortic EC were grown on 96-well plates and an ELISA was used to assess surface expression of the CAMs. TNF-alpha increased VCAM-1, ICAM-1, and E-selectin by 4 h but had no affect on the expression of PECAM. A functioning actin cytoskeleton was important for VCAM-1 and ICAM-1 expression as both cytochalasin D, an actin filament disruptor, and jasplakinolide, an actin filament stabilizer, attenuated the expression of these CAMs. These compounds were ineffective in altering E-selectin surface expression. Myosin light chains are phosphorylated in response to TNF-alpha and this appears to be regulated by Rho kinase instead of myosin light chain kinase. However, the Rho kinase inhibitor, Y27632, had no affect on TNF-alpha-induced CAM expression. ML-7, a myosin light chain kinase inhibitor, had a modest inhibitory effect on the translocation of VCAM-1 but not on ICAM-1 or E-selectin. These data suggest that the surface expression of VCAM-1 and ICAM-1 is dependent on cycling of the actin cytoskeleton. Nevertheless, modulation of actin filaments via myosin light chain phosphorylation is not necessary. The regulation of E-selectin surface expression differs from that of the other CAMs.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号