首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Erythropoietin (EPO) stimulates the production of small erythroid cell stimulating factors (molecular weight <5 kDa) in cultures of bone marrow endothelial cells. We identified a fragment of thrombospondin-4 (TSP-4) as an EPO-stimulated protein in endothelial cell lysates. Pre-incubation of the low molecular weight fractions from supernatants of EPO-treated umbilical cord endothelial cells (HUVEC) with antibodies against the C-terminal residues of TSP-1,2 and TSP-4 decreased the erythroid cell stimulating activity. The C-terminal TSP-1 section corresponding to a molecular weight lower than 6 kDa has the integrin-associated protein binding motif VVM. The corresponding TSP-4 fragment, lacking the three residue sequence VVM, has a distinctive acidic peptide comprising the last 21 amino acids (C21) with the characteristics of an amphipathic helix. C21 stimulated thymidine incorporation into bovine erythroid cells, increased cell numbers in cultures of cord blood CD36+ erythroid precursors and skin fibroblasts, and decreased HUVEC proliferation. SC21, a homologous peptide of identical amino acid composition but with interchanged residues, was non-amphipathic and had no erythroid cell stimulating activity.  相似文献   

2.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

3.
Two distinct hemopoietic growth factors, interleukin 3 (IL-3) and erythropoietin (EPO), support the growth and development of erythroid cells in a sequential manner in vitro. Stimulation of multipotential stem cells by IL-3 appears to develop committed erythroid progenitor cells that respond to EPO. When several murine IL-3-dependent cell lines were assayed for their ability to respond to EPO, the growth and survival of the three cell lines showing the profiles of either myeloid or mast cell lineage (IC-2, DA-1, FDC-P2) were stimulated by EPO in a dose-dependent fashion. To determine whether the biologic effects were mediated through the specific receptors for EPO, we performed binding experiments on these cells with radioiodinated EPO. All of these cells displayed significant levels of specific binding for EPO. Among a family of hemopoietic growth factors, only unlabeled EPO was able to compete for the binding of radioiodinated EPO to the cells. Analysis of the binding data revealed the existence of a single case of binding sites in extremely low abundance. IC-2 cells were used to study the effects of IL-3 on the regulation of expression of EPO receptors. It was demonstrated that a decrease in IL-3 concentration in the culture medium increased the responsiveness to EPO and the amount in specific binding of EPO as well. These results suggest that some IL-3-dependent cell lines have functional EPO receptors and their expression may be modulated by IL-3.  相似文献   

4.
The anti‐inflammatory peptide early pregnancy factor/chaperonin 10 (cpn10) was identified by 2D‐electrophoresis/mass spectrometry as one of the proteins increased in human umbilical cord endothelial cells (HUVEC) after treatment with erythropoietin (EPO). EPO increased the amount of cpn10 released into the medium of HUVEC cultures, despite the absence of a secretory signal peptide. Although immunosupressive agents would represent an indirect advantage for red cell formation under conditions of infection and inflammation, it is possible that cpn10 may have direct effects on erythroid cells. We show that the chaperonin decreased cell proliferation in cultures of the erythroleukemia cell line K562 and increased the amounts of the erythroid differentiation markers glycophorin A and hemoglobin in TF‐1 cells. Nevertheless, cpn10 is not a specific erythroid cell differentiation factor, because monolayers of skin fibroblasts overexpressing cpn10 had significantly higher levels of the differentiation marker collagen I than normal fibroblasts. Nothing is known about the mechanism of action of cpn10 in its capacity as a general differentiation factor. An analysis of early changes taking place in K562 cells after incubation with cpn10 using antibody microarrays identified several phosphorylation events, including a decrease of GSK‐3α phosphorylation. Further studies in TF‐1 cells indicated that cpn10 decreased the phosphorylation of cofilin‐1 while stimulating that of GSK‐3β. Furthermore, glycophorin A production decreased in the presence of a GSK‐3 inhibitor in the same cells. These experiments support the idea that GSK‐3‐regulated signal transduction pathways are not only important for stem cell maintenance but may be involved in events controlling cell differentiation. J. Cell. Physiol. 219: 470–476, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
This study tested the hypothesis that 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] plays a role in human umbilical vein endothelial cells (HUVEC) cultures. HUVEC were incubated with 10 or 100 nM 1,25(OH)(2)D(3) for 24 h, in the absence or presence of 40 ng/ml tumor necrosis factor-alpha (TNF-alpha) or 2 ng/ml interleukin-1alpha (IL-1alpha). 1,25(OH)(2)D(3) did not affect HUVEC viability and proliferation, while TNF-alpha, alone or in combination with the hormone, significantly inhibited HUVEC viability. [(3)H]thymidine incorporation in HUVEC treated with TNF-alpha or IL-1alpha significantly decreased, in the absence or in the presence of the hormone, while the levels of vitamin D receptor markedly increased in the presence of 1,25(OH)(2)D(3) alone or associated with TNF-alpha or IL-1alpha, in comparison to the control. The noteworthy increase in protein levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) induced by TNF-alpha was significantly decreased after incubation of the cells with 1,25(OH)(2)D(3), this effect not being seen on E-selectin expression. Neither apoptosis nor nuclear translocation of NF-kappaB, induced in HUVEC by TNF-alpha was influenced by 1,25(OH)(2)D(3) treatment.  相似文献   

6.
Treatment of vascular endothelial cells with inflammatory cytokines stimulates surface expression of E-selectin (previously known as endothelial-leukocyte adhesion molecule-1) and promotes the transendothelial migration of neutrophils. To assess participation of E-selectin in cytokine-mediated neutrophil migration, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. When HUVEC-amnion cultures were stimulated for 4 h with relatively low concentrations of IL-1 (0.1 to 0.15 U/ml), mAb BB11 or H18/7 to E-selectin partially inhibited migration of subsequently added neutrophils. However, when the cultures were stimulated with 15 U/ml of IL-1 for 4 or 24 h, little to no inhibition was observed. mAb to E-selectin also failed to inhibit migration of neutrophils across HUVEC-amnion cultures treated with low doses of IL-1 when the leukocytes were additionally stimulated by the chemoattractant leukotriene B4. In contrast, migration of neutrophils across IL-1-treated HUVEC was profoundly inhibited by mAb to CD11/CD18 leukocytic integrins under all conditions tested. Results of these studies suggest that participation of E-selectin is not essential for migration of neutrophils across cytokine-stimulated HUVEC in vitro; rather, E-selectin can be bypassed in favor of CD11/CD18-dependent mechanisms under appropriate circumstances.  相似文献   

7.
mAbs directed against the alpha-chain (Tac/CD25) of the IL-2R are an emerging therapy in both transplantation and autoimmune disease. However, the mechanisms underlying their therapeutic efficacy have not been fully elucidated. Therefore, we examined the effect of IL-2R blockade on Th1 and Th2 cytokine production from human PBMC. Addition of a humanized anti-Tac Ab (HAT) to activated PBMC cultures inhibited IFN-gamma production from CD4 and CD8 T cells by 80-90%. HAT partially inhibited production of TNF-alpha and completely inhibited production of IL-4, IL-5, and IL-10. Furthermore, IL-12, a central regulatory cytokine that induces IFN-gamma, was undetectable in treated cultures. As T cell-dependent induction of IL-12 is regulated via CD40/CD40 ligand (CD40L) interactions, we examined the effect of HAT on CD40L expression. We found CD40L expression to be biphasic with an early (6 h) peak that is CD28/IL-2-independent, but a later peak (48 h) being CD28/IL-2-dependent and inhibited by HAT. Similarly, IFN-gamma production at 6 h was CD28/IL-2-independent but CD28/IL-2-dependent and inhibited by HAT at 48 h. Nonetheless, addition of rCD40L or exogenous IL-12 to HAT-treated cultures could not restore IFN-gamma production. The IFN-gamma deficit in such cultures appears to be due to a direct inhibition by HAT of IL-12-independent IFN-gamma production from T cells rather than altered expression of either the IL-12Rbeta1 or IL-12Rbeta2 chains. These data demonstrate that IL-2 plays a critical role in the regulation of Th1 and Th2 responses and impacts both IL-12-dependent and -independent IFN-gamma production.  相似文献   

8.
We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.  相似文献   

9.
An in vitro model of T cell adhesion to human umbilical vein endothelial cells (HUVEC) and transendothelial migration was used to determine whether the activation state of the T cell or cytokine exposure of the HUVEC altered T cell-HUVEC interactions or receptor utilization. Stimulation of T cells with the activator of protein kinase C, phorbol dibutyrate (PDB) alone or in combination with the calcium ionophore, ionomycin increased their binding to HUVEC. Much of the binding of control and activated T cells to HUVEC was mediated by leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18), because mAb to either chain of this molecule inhibited binding substantially, but not completely. Activation of HUVEC with IL-1 also increased binding of T cells. Binding of control T cells to IL-1-stimulated HUVEC, however, was found to be LFA-1 independent, because mAb to CD11a/CD18 failed to block the interaction. In contrast, binding of activated T cells to IL-1-stimulated HUVEC was partially inhibited by mAb to LFA-1. Binding of activated T cells to IL-1-stimulated HUVEC also involved CD44 because this interaction was partially blocked by mAb to this determinant. When T cell migration was analyzed, it was found that the migration of PDB-activated T cells was three to four-fold more than that of control T cells. Migration through HUVEC and random migration were both enhanced by PDB stimulation. However, when the T cells were costimulated with PDB and ionomycin, migration was not increased above that of control T cells. PDB-activated T cells appeared to use LFA-1 for migration regardless of the activation status of the HUVEC, because mAb to CD11a/CD18 partially blocked their migration after binding to HUVEC. There was also a modest inhibition of PDB-activated T cell migration by mAb to CD44. In contrast, migration of control T cells involved neither LFA-1 nor CD44. Finally, binding of control T cells to high endothelial venules of peripheral lymphoid tissue was found to be CD11a/CD18 and CD44 independent, and completely inhibited by activation with either PDB or the combination of PDB and ionomycin. These results demonstrate that T cells use LFA-1 and CD44 as well as other as yet unidentified adhesion receptors for interactions with HUVEC, and that use of these adhesion receptors is mutable and related to the activation state of the T cell and cytokine stimulation of the HUVEC.  相似文献   

10.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

11.
Insulin-like growth factor-binding protein-1 (IGFBP-1) was purified from human midtrimester amniotic fluid using monoclonal anti-IGFBP-1 affinity column. Two peaks were obtained in anion exchange chromatography. Both had the same molecular mass of 30 kDa. In monolayer cultures of fetal skin fibroblasts both forms of IGFBP-1 inhibited binding of [125I]IGF-I onto the cells, but amplified the IGF-I-stimulated [3H]thymidine incorporation into the same cells. Radiolabeled IGFBP-1 did not bind to the cells. No detectable IGFBP-1 was released into conditioned medium from the cells, and they contained no specific IGFBP-1 mRNA. Recently we found that the same IGFBP-1 preparation inhibits IGF-I-stimulated [3H]thymidine incorporation into human hyperstimulated granulosa cells. These results show that, depending on target cells, the same protein is capable of either stimulating or inhibiting DNA synthesis.  相似文献   

12.
A bioassay based on the measurement of thymidine incorporation into trichloroacetic acid-insoluble materials in erythroid cell suspensions from fetal calf liver was used as the assay for purification of two small peptides (erythrotropins I and II) from fetal calf intestine. The peptides were purified using reversed-phase and gel permeation high performance liquid chromatography (HPLC). The two peptides have very similar amino acid compositions and a molecular weight of about 3500 daltons. Erythrotropin II stimulated thymidine incorporation and potentiated the action of erythropoietin in cultures of erythroid cells from fetal rat liver.  相似文献   

13.
Erythropoietin (EPO) regulates the production of red blood cells primarily by preventing apoptosis of erythroid progenitors. More recently, however, EPO has emerged as a major cytoprotective cytokine in several nonhemopoietic tissues in the setting of stress or injury. The underlying mechanisms of the protective responses of EPO have not been fully defined. Here we show that EPO triggers a phosphatidylinositol 3-kinase-(PI3K)-dependent survival pathway that counteracts endothelial cell death. The protection conferred by PI3K relies on the subsequent induction of Bcl-x(L), a prosurvival member of the Bcl-2 protein family. In addition, EPO counteracts the upregulation of the pro-apoptotic BH3-only protein BIM, which is induced by serum withdrawal. EPO also activates extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are involved in a Bcl-x(L)-independent cytoprotective pathway. EPO caused a prolonged activation of nuclear factor (NF)-kappaB, which was blocked by inhibition of PI3K, but not by inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK), suggesting that EPO-activated NF-kappaB requires PI3K activity. However, the activation of the NF-kappaB pathway was not required for the ability of EPO to counteract endothelial apoptosis. Thus EPO promotes survival of endothelial cells through PI3K-dependent Bcl-x(L)-induction and BIM regulation, as well as through a separate mechanism involving the ERK pathway.  相似文献   

14.
15.
We investigated possible regulatory effects of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, on cytokine release from macrophages. Immobilized TSP-1 enhanced IL-6 release from the human monocytic U937 cells stimulated with phorbol myristate acetate and LPS, whereas it inhibited IL-10 release. The 70-kDa fragment of TSP-1 containing the type 1 repeats showed the same regulatory effects. The enhanced IL-6 release by TSP-1 was inhibited by anti-CD36 antibody or antibody against the sequence of the binding site to CD36 in the type 1 repeats of TSP-1. Conversely, the decrease in IL-10 release by TSP-1 was strengthened by the blocking of the interaction between CD36 and TSP-1. Furthermore, the involvement of TGF-beta1 in the inhibition of IL-10 release by TSP-1 was indicated by the facts that (i) TSP-1 induced activation of TGF-beta1 produced by the U937 cells, (ii) exogenously added TGF-beta1 inhibited IL-10 release, and (iii) antibody against TGF-beta1 blocked the inhibition of IL-10 release by TSP-1. Together, the present findings suggest that TSP-1 enhances IL-6 release from macrophages by interaction with CD36, whereas IL-10 release is regulated by the balance between the enhancing effect of TSP-1 via CD36 and the suppressive effect by TSP-1-activated TGF-beta1.  相似文献   

16.
17.
Respiratory syncytial virus (RSV) is worldwide the most frequent cause of bronchiolitis and pneumonia in infants requiring hospitalization. In the present study, we supply evidence that human lung microvascular endothelial cells, human pulmonary lung aorta endothelial cells, and HUVEC are target cells for productive RSV infection. All three RSV-infected endothelial cell types showed an enhanced cell surface expression of ICAM-1 (CD54), which increased in a time- and RSV-dose-dependent manner. By using noninfectious RSV particles we verified that replication of RSV is a prerequisite for the increase of ICAM-1 cell surface expression. The up-regulated ICAM-1 expression pattern correlated with an increased cellular ICAM-1 mRNA amount. In contrast to ICAM-1, a de novo expression of VCAM-1 (CD106) was only observed on RSV-infected HUVEC. Neither P-selectin (CD62P) nor E-selectin (CD62E) was up-regulated by RSV on human endothelial cells. Additional experiments performed with neutralizing Abs specific for IL-1alpha, IL-1beta, IL-6, and TNF-alpha, respectively, excluded an autocrine mechanism responsible for the observed ICAM-1 up-regulation. The virus-induced ICAM-1 up-regulation was dependent on protein kinase C and A, PI3K, and p38 MAPK activity. Adhesion experiments using polymorphonuclear neutrophil granulocytes (PMN) verified an increased ICAM-1-dependent adhesion rate of PMN cocultured with RSV-infected endothelial cells. Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of PMN. Our in vitro data suggest that human lung endothelial cells are target cells for RSV infection and that ICAM-1 up-regulated on RSV-infected endothelial cells might contribute to the enhanced accumulation of PMN into the bronchoalveolar space.  相似文献   

18.
Current novel therapeutic agents for the treatment of sickle cell anaemia (SCA) focus on increasing foetal haemoglobin (HbF) levels in SCA patients. Unfortunately, the only approved HbF‐inducing agent, hydroxyurea, has long‐term unpredictable side effects. Studies have shown the potential of plant compounds to modulate HbF synthesis in primary erythroid progenitor stem cells. We isolated a novel HbF‐inducing Terminalia catappa distilled water active fraction (TCDWF) from Terminalia catappa leaves that induced the commitment of erythroid progenitor stem cells to the erythroid lineage and relatively higher HbF synthesis of 9.2‐ and 6.8‐fold increases in both erythropoietin (EPO)‐independent and EPO‐dependent progenitor stem cells respectively. TCDWF was differentially cytotoxic to EPO‐dependent and EPO‐independent erythroid progenitor stem cell cultures as revealed by lactate dehydrogenase release from the cells. TCDWF demonstrated a protective effect on EPO‐dependent and not EPO‐independent progenitor cells. TCDWF induced a modest increase in caspase 3 activity in EPO‐independent erythroid progenitor stem cell cultures compared with a significantly higher (P?0.05) caspase 3 activity in EPO‐dependent ones. The results demonstrate that TCDWF may hold promising HbF‐inducing compounds, which work synergistically, and suggest a dual modulatory effect on erythropoiesis inherent in this active fraction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
It is well known that regulatory interactions between hematopoietic and lymphoid cells are mediated by different mediators. The cells of erythroid lineage are not an exception and have a regulatory effect on hemato- and immunopoiesis that can be mediated through the production of cytokines i.e. by soluble factors - a universal mechanism for cell regulation in hematopoietic and immune systems. It has been previously shown that erythroid progenitor cells from mice express mRNA of cytokines such as IL-1 alpha and beta, IL-4, IL-6, IFN-gamma, GM-CSF and TGF-beta. In this report we present the results of the production of the main immunoregulatory cytokines by erythroid cells derived from human embryonic liver. It was revealed that the cell population enriched with erythroid progenitors, isolated from human fetal liver, can produce IL-1 beta, IL-2, IL-4, IL-6. The levels of production of cytokines by immature erythroid progenitor cells is compared to the levels of corresponding cytokines produced by mitogen-stimulated peripheral blood mononuclear cells. The production of these cytokines changed quantitatively under the effect of erythropoietin, and are correlated with the expression of differentiation markers of erythroid cells such as AG-EB and Glycophorin A. The role of cytokine production by erythroid cells in hemato- and immunopoiesis and the mechanisms of self-regulation of proliferation and differentiation of erythroid progenitor cells is discussed.  相似文献   

20.
Ye H  Hao TL  Jin XR 《生理学报》2000,52(5):355-359
用噻唑蓝比色法(MTT法)、H^3-胸腺嘧啶核苷(H^3-TdR)掺入法和流式细胞术,观察红细胞生成素(EPO)3’端增强子片段对培养的猪肺动脉平滑肌细胞(PASMCs)的内皮依赖性和非内皮依赖性低氧性增殖的影响。结果为:(1)低氧24h后PASMCs明显增殖,转入野生型EPO3’端增强子片段可被抑制,而转入突变型片段无此作用;(2)肺动脉内皮细胞(PAECs)低氧24h,其条件培养液有明显的促P  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号