首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pineal bodies were removed immediately after death from 6 rats: representing both sexes, and adult and 21-day postnatal ages; cut into 2 or 3 pieces, and subjected to experimental fixations at pH 7.3, 0-4 C as follows: 1-2 hr in 1% OsO4, with veronal-acetate buffer of phosphate buffer; 3-4 hr in 3% or 6% glutaraldehyde in 0.1 M or 0.2 M phosphate buffer, with or without 1% sucrose. Specimens from OsO4 were dehydrated, and embedded in epoxy resin; those from glutaraldehyde were allowed to soak in buffer for 12-16 hr, then transferred to 1% OsO4 at 0-4 C for 2 hr, and embedded in the same manner as the ones fixed directly in OsO4. Representative electron micrographs of postganglionic sympathetic endings were studied for the morphology and frequency of granular vesicles. No consistent difference was shown between vesicles fixed in OsO4 buffered by phosphate or by veronal-acetate, nor was there any effect caused by the different concentrations used for the glutaraldehyde solution; however, vesicles fixed by the glutaraldehyde-OsO4 sequence showed an enhancement in the graininess of their membranes, were slightly larger, and had a much larger dense core than those fixed by OsO4 alone. After glutaraldehyde-OsO4, granular vesicles showed a frequency of 81%, whereas after direct fixation in OsO4, only 40% without significant change their number per unit area. Therefore, glutaraldehyde-OsO4 seems to be more effective than straight OsO4 for the demonstration of granular vesicles in the autonomic nervous system.  相似文献   

2.
The silver impregnation method of Grimelius has been applied to 100-150 μ thick sections of tissues fixed 2 hr to 1 mo in mixtures containing formaldehyde, glutaraldehyde or picric acid. After silvering, the sections (partly postfixed in 1% OsO4, for 0.5 hr) were processed for electron microscopy. Endocrine granules of pancreatic A cells, enter-ochromaffin and some nonenterochromaffin cells of the gastrointestinal mucosa, thyroid C cells and adrenal medullary cells were found to be selectively stained by silver grains 10-30 nm in diameter, either as a peripheral “halo” or covering the entire granule. At least in some cells, the reactive material should not be identified with the hormonal products known to be stored in the granules.  相似文献   

3.
The primary fixative containing 2% acrolein, 2% glutaraldehyde in 50% aqueous dimethyl sulfoxide (DMSO) buffered at pH 7.4, was applied for 7 hr in the cold. After a short wash in 0.02 M s-collidine buffer, pH 7.4, containing 0.2 M sucrose and 0.001 M CaCl2, the yeast cells were postfixed in 3% OsO4 at pH 4.0 (veronal acetate buffer). This method preserves many cytoplasmic features such as lipid deposits and ribosomes which are usually destroyed by permanganate fixation. DMSO apparently acts as a permeating agent allowing maximum penetration of the cell wall by the fixative without disrupting cellular fine structure  相似文献   

4.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

5.
Formalin fixed autopsy tissue containing lipids were cut into 1-5 nun thick blocks, washed well, then postfixed in 2% OsO4 in 0.03 M veronal acetate buffer for 30, 60, 90, 120, or 180 min with or without ultrasonic treatment. Tissues exposed to ultrasound for 90 min showed superior penetration of OsO4 and well preserved histological architecture. Tissues also were immersed for 1 hr in veronal acetate buffer (pH 7.4) containing 0.5% imidazole or triazole and compared with untreated controls. Paraffin sections, 4 μm thick, were examined under a light microscope with an image analyzer. Both intensity and percentage area of osmium blackening were significantly higher in samples immersed in imidazole or triazole than in untreated controls. No difference was observed between imidazole- and triazole-immersed samples. The OsO4 method, modified by ultrasound treatment and imidazole- or triazole-immersion, can be applied to routine formalin fixed autopsy materials for improved lipid visualization.  相似文献   

6.
Sites of glucan phosphorylase activity in fine structures, as shown by the lead precipitation method (Hori, Stain Techn., 39: 275, 1964) were studied by electron microscopy. Rat livers were fixed 2 hr at 0 C in buffered 2.5% glutaraldehyde, frozen-sections cut and incubated in the medium containing glucose-1-phosphate, 2.7 mM; NaF, 20 mM; acetate buffer, pH 5.8, 80 mM; Pb(NO3)2, 4.2 mM; and sucrose, 0.44 M; refixed in buffered 1% OsO4, dehydrated and embedded in Epon 812 as usual. The reaction product was found in close association with endoplasmic reticulum, but not in mitochondria, nuclear membrane and the cisternae of endoplasmic reticulum. The possibility of demonstrating by the present method the indirect hydrolysis of glucose-1-phosphate through the phosphoglucomutase-glucose-6-phosphatase system was ruled out by inhibiting glucose-6-phosphatase with fluoride and ethanol.  相似文献   

7.
Maillet's OsO4-ZnI2 fixation staining can be combined with a subsequent counterstaining by Alcian blue or aldehyde fuchsin to demonstrate neurosecretory cells in addition to cytological details of the nerve tissue. This technic has been applied to various annelids: Eisenia foetida (Oligochaeta), Erpobdella octoculata (Achaeta) and Nereis diversicolor (Polychaeta). The material is fixed in a 1:4 mixture of 2% OsO4 and 3% ZnI2 for 15 nr, embedded in paraffin, sectioned at 5 μ and the sections alternatively mounted on two glass slides. One of these is oxidized by a solution of 0.3% KMnO4 acidified by 0.6% H2SO4 and counterstained with 1% Alcian blue, pH 0.2, the other one is mounted in balsam. The two preparations may then be compared to locate the neurosecretory cells among the other neurons shown on a slide treated only by the OsO4-ZnI2. Secretory cells are not stained by Maillet's reagent; except for their Golgi bodies and their cellular and nuclear membranes. The zone of grains which is generally strongly stained by the Alcian blue takes a yellowish hue from the OsO4-ZnI2 fixation. This method could be successfully applied to the histological controls in regeneration experiments. In these last ones, we must simultaneously observe the regeneration of the nervous fibres and the possibility of intervention of neurosecretory elements.  相似文献   

8.
Conventional methods of chemical fixation are often inadequate for preserving yeast ultrastructure. The thick cell wall severely limits penetration of fixatives rendering poor detail of the cell wall, membranes, and overall anatomy. Dimethylsulfoxide (DMSO) enhances penetration of chemicals and has been added to fixatives to improve cell preservation. At high concentrations (5 to 50%), however, it affects ultrastructure unpredictably. We found that adding 0.1% DMSO to fixatives greatly improved retention of yeast ultrastructure. Candida albicans, C. glabrata and Aspergillusfumigatus were fixed for 3 hr in 3% paraformaldehyde, 1% glutaraldehyde, 1 mil MgCl2, 1 mM CaCl2, 0.1% DMSO in 0.1 M sodium cacodylate buffer followed by 1% OsO4, 1% K2Cr2O7, 0.85% NaCl. 0.1% DMSO in the same buffer. Thin epoxy sections were post-stained in uranyl acetate and lead citrate. The multilayered character of the cell wall was distinct and well structured. Addition of ruthenium red or alcian blue to the fixatives further enhanced the outer fibrillar layer. The plasma membrane was contiguous and tightly adjacent to the inner manno-protein layer of the cell wall. The cytoplasm was well preserved and the overall preservation of the yeast ultrastructure was significantly improved.  相似文献   

9.
Rat suprarenal glands fixed in Palade's 1% OsO4, buffered at pH 7.7 with veronal-acetate, to which 0.1% MgCl2 was added, were embedded in Vestopal-W and sectioned at 0.2-1 µ. The sections were attached to slides by floating on water, without adhesive, and drying at 60-80° C, placed in acetone for 1 min and then treated with the following staining procedure: Place the preparation in a filtered solution of oil red O, 1 gm; 70% alcohol, 50 ml; and acetone, C.P., 50 ml; for 0.5-1 hr. Rinse in absolute ethyl alcohol; drain; counterstain with 0.5% aqueous thionin for 5 min; rinse in distilled water; drain; stain in 0.2% azure B in phosphate buffer at pH 9, for 5 min. Dry and apply a drop of immersion oil directly on the section. The preparations are temporary. Ciaccio-positive lipids, rendered insoluble by OsO, fixation, stained red to ochre.  相似文献   

10.
The fixing-staining mixture consisted of 1 part of 2% aqueous OsO4 and 3 parts of 3% Nal in distilled water. Fresh lungs were cut into 2 mm slices and immersed in this solution for 24 hr at room temperature. Controls were fixed in buffered OsO4 alone. Selective staining of type II alveolar cells was shown by the OsOt-NaI mixture but was absent in the controls. No additional staining of the sections was required, and the selectivity was readily observable in either paraffin or Araldite sections by light microscopy and in Araldite sections by electron microscopy  相似文献   

11.
Luft's ruthenium red (RR) method was applied to lung tissue. Small blocks of mouse lung were fixed for 1 hr with 1.2% glutaraldehyde at 0-4 C, buffered with 0.067 M cacodylate, pH 7.3 and containing RR, 1 mg/ml. Following fixation, lung blocks were immersed in 0.15 M cacodylate for 10 min and postfixed for 3 hr at room temperature with 2% OsO4 buffered with 0.067 M cacodylate, pH 7.3, and containing RR, 1 mg/ml. Blocks were dehydrated with ethanol, embedded in Araldite, and ultrathin sections treated with uranyl acetate and lead citrate solutions to enhance contrast of cell structures. Electron micrographs revealed an electron-dense layer coating the exposed surfaces of alveolar cells. This layer corresponded in location and appearance to that observed by other investigators who used colloidal iron techniques.  相似文献   

12.
The fixative was prepared by dissolving 0.1 gm of OsO4 in 0.2 ml of CCI4. It was applied to microscopic green algae, concentrated by centrifugation, in a volume equal to that of the residual culture medium and allowed to act for 45 min at either 20 or 4 C. Such fixation has proved of value in producing an electron micrographic picture of particular use in the study of cytoplasmic microtubules. The fixative acts by diffusion of OsO4, from the nonaqueous to the aqueous phase and thus provides a condition similar to that of vapour fixation but with a much higher concentration of OsO4  相似文献   

13.
Tissue blocks 2 × 2 × 0.4 cm were fixed 6-24 hr in phosphate-buffered 5% glutaraldehyde then sliced to 2 × 2 × 0.1 cm and soaked in 0.1 phosphate-buffer (pH 7.3) for at least 12 hr. Fixation was continued for 2 hr in phosphate-buffered 1-2% OsO4. The slices were dehydrated, infiltrated with Araldite, and embedded in flat-bottomed plastic molds. Sectioning at 1-8 μ with a sliding microtome was facilitated by addition of 10% dibutylphthalate to the standard epoxy mixture. The sections were spread on warm 1% gelatin and attached to glass slides by drying, baking at 60 C, fixing in 10% formalin or 5% glutaraldehyde and baking again. Sections were mordanted in 5% KMnO4 (5 min), bleached with 5% oxalic acid (5 min) and neutralized in 1% Li2CO3 (1 min). Several stains could then be applied: azure B, toluidine blue, azure B-malachite green, Stirling's gentian violet, MacCallum's stain (modified), tribasic stain (modified) and phosphotungstic acid-hematoxylin. Nuclei, mitochondria, specific granules, elastic tissue or collagen were selectively emphasized by appropriate choice of staining procedures, and cytologic detail in 1-3 μ sections was superior to that shown by conventional methods. Selected areas from adjacent 4-8 μ sections could be re-embedded for ultramicrotomy and electron microscopy.  相似文献   

14.
When thin sections of spermatogenic chromatin are fixed with either glutaraldehyde alone or postfixed with osmium tetroxide (OsO4) and stained with uranyl acetate (UAc) for increasing times, even after as little as 1 min, stain uptake is proportional to section thickness. Greater UAc uptake is observed in chromatin fixed with gutaraldehyde only, but stain uptake is reduced following a long wash with distilled water to a level similar to that seen with postfixed chromatin. Lead citrate poststaining of chromatin fixed with either glutaraldehyde or postfixed with OsO4 increases UAc uptake by a factor of about 3.

The staining of thin sections of spermatogenic chromatin with ethanolic phosphotungstic acid (PTA) shows a region where stain uptake is proportional to section thickness followed by a plateau. This staining pattern is seen in chromatin fixed with glutaraldehyde alone or postfixed with OsO4; similar levels for final PTA uptake are also observed.

An increase in the resin content of embedded chromatin postfixed with OsO4 is proposed to explain the decrease and increase in the rate of migration of UAc and ethanolic PTA staining solutions, respectively.  相似文献   

15.
Tissue blocks 2 × 2 × 0.4 cm were fixed 6-24 hr in phosphate-buffered 6% glutaraldehyde then sliced to 2 × 2 × 0.1 cm and rinsed in phosphate buffer for at least 12 hr. Fixation was continued for 2 hr in phosphate-buffered 1-2% OsO4. The slices were dehydrated, infiltrated with Araldite, and embedded in flat-bottomed plastic molds. Sectioning at 4-8 μ with a sliding microtome was facilitated by addition of 10% dibutylphalate to the standard epoxy mixture. The sections were spread on water and attached to coverslips by drying, then heating to 80 C for 1 min. Staining 2 min with 1-3% KMnO4 and temporary mounting in glycerol on a slide allowed the desired area for electron microscopy to be selected and marked. This area was then cemented to the facet of a conventional epoxy casting with a drop of epoxy resin (without added dibutylphthalate). After polymerization, the coverslip was removed by quick cooling leaving a flat re-embedded portion of the original section. This portion was viewed by transillumination in a dissecting microscope and trimmed of surplus tissue. Ultrathin sections for electron microscopy were obtained in the usual manner.  相似文献   

16.
Tissue which had been fixed in 4% glutaraldehyde and postfixed in 2% OsO4 was subsequently treated with p-phenylenediamine, either in the block prior to embedding in paraffin or Epon or, in the case of Epon-embedded material, after sectioning for light microscopy. The p-phenylenediamine was best used as a 0.8-1% solution in 70% alcohol. The p-phenylenediamine caused a very considerable intensification of staining of any cell components; this intensification of staining was particularly marked in the case of the lipid granules of renal medulla.  相似文献   

17.
A relatively simple method for recovering more than 80% of the osmium from used fixative solutions as OsO4 is described. The solutions that we have worked with contained excess FeSO4, which is added routinely to reduce the tetroxide to the dioxide and make them safe for disposal. The solutions also contained other materials such as cacodylic acid (dimethylarsinic acid), mono-sodium phosphate, sodium veronal (a buffer containing barbital and sodium acetate), NaCl, CaCl2, various sugars, and such lipids as may have been extracted from animal tissue during fixation.  相似文献   

18.
Deparaffinized, 3-5μ, sections are brought to water, oxidized 3.5 min in an equal-parts mixture of 0.3% H2SO4 and 0.3% KMnO4, and decolorized with 4% K2S2O5. Nuclei are stained with Gomori's (1939) chromium-hematoxylin, and cell granules with Cason's (1950) mixture. The eosinophilic cells of the hypophysis and the alpha cells of pancreatic islets (of Langerhans) stain carmine red; basophilic and beta cells stain dark blue. Heidenhain's susa is the most suitable fixative for hypophysis, Bouin's fluid for pancreas; but a satisfactory result is obtainable after formalin-sublimate or plain formalin. Besides studying the ratio of the cell types in the hypophysis or in pancreatic islets, it is possible to estimate the granule content of the cells. The method works on human autopsy material provided fixation of hypophysis occurs within 24 hr, and. pancreas, 12 hr post mortem, and it is suitable also for quite fresh organs.  相似文献   

19.
Human, rat and mouse pituitary tissues have been examined electron microscopically in transmission (TEM), scanning-transmission (STEM) and scanning (SEM) modes for the surface appearance of the secretory granules in tissue sections. Cryofixed and cryosectioned tissue showed only slightly protruding granule profiles which had a smooth surface. Cryofixed, freeze-dried and Epon embedded pituitaries, on the other hand, demonstrated swollen and furrowed surfaces over the granules after contact with water. This topography could also be seen after glutaraldehyde fixation but less after post-fixation in OsO4. The surface alterations in the sections of pituitary secretory granules are thought to be due to differences in the homogeneity of the resin infiltration, leaving resin-free openings where water can enter. It also seems probable that the Epon resin is more influenced by water than has been previously assumed, based on the findings of efficient elimination of osmium from the granules after incubation of tissue sections in water for only 10 min.  相似文献   

20.
This rapid spectrophotometric method for determining the OsO4 concentration in fixative and stock solutions is based on the reduction of OsO4 by acidified KI to the blue species of OsI6 =, which is then determined at 649 mµ. The salt K2OsI6 has been isolated from the reaction mixture and characterized. Method: A I ml aliquot of the solution, containing up to 3% OsO4, is diluted to 100 ml with distilled water. To 1 ml of the diluted solution is added, in order: distilled water, 2 ml; 1 M HCI, 1 ml; and 1 M KI, 1 ml. Optical density at 649 mµ is read from 10-120 min thereafter. OsO4 concentration is calculated from the measured molecular extinction coefficient of OsI6 =, 4400 liter/mole cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号