首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

2.
Apoptosis can be induced by various stimuli such as the ligands of death receptors, chemotherapeutic drugs and irradiation. It is generally believed that chemotherapeutic drugs induce mitochondrial damage, cytochrome c release and activation of caspase-9, leading to apoptosis. Here, we found that an isoprenoid antibiotic, 4-O-methyl ascochlorin, significantly induces typical apoptotic events in Jurkat cells including the degradation of poly (ADP-ribose) polymerase, DNA fragmentation, activation of caspase-3, -9 and -8, and cytochrome c release from mitochondria. Similar to Fas stimulation, 4-O-methyl ascochlorin but not staurosporine, cycloheximide and actinomycin D, induced apoptosis in SKW6.4 cells, in which apoptosis is strongly dependent on death-inducing signaling-complex. Bcl-2 overexpression in Jurkat cells completely suppressed the apoptosis, but procaspase-9 processing was partially induced. A caspase-8 inhibitor, IETD-fmk, effectively suppressed poly (ADP-ribose) polymerase cleavage and cytochrome c release. However, 4-O-methyl ascochlorin induced apoptosis in Jurkat cells deficient of caspase-8 or Fas-associated death domain protein. These results suggest that 4-O-methyl ascochlorin induces apoptosis through the mechanism distinct from conventional apoptosis inducers.  相似文献   

3.
Apoptosis triggered by the death receptor CD95 (APO-1 or Fas) is pivotal for the homeostasis of the immune system. We investigated differential effects of glutathione depletion on CD95-triggered apoptosis in T and B cell lines as well as the glutathione dependence of caspase-8 activation. In B lymphoblastoid SKW6.4 cells, CD95-mediated apoptosis was prevented upstream of caspase-8 activation and caspase-3-like activity after acute glutathione depletion by diethyl maleate or cis-chloro-dinitrobenzene. Immunoprecipitation of the death-inducing signaling complex (DISC) revealed that the DISC was still formed in the glutathione-depleted state. The first cleavage step of procaspase-8 activation at the DISC, however, was inhibited. Accordingly, under cell-free conditions, radiolabeled procaspase-8 was processed at the immunoprecipitated DISC only after the addition of exogenous dithiothreitol or reduced glutathione. We also observed suppression of CD95-mediated apoptosis in glutathione-depleted CEM and H9 cells. Notably, Jurkat cells still died upon CD95 engagement under this condition, displaying incomplete nuclear fragmentation and a partial switch to necrosis; this may be explained by reduced cytochrome c/dATP-mediated caspase activation observed in cytosol from glutathione-depleted Jurkat cytosol. Our data indicate that the activation of caspase-8 at the DISC and hence CD95-mediated apoptosis induction shows a cell-specific requirement for intracellular glutathione.  相似文献   

4.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

5.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

6.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

7.
Hypericin (HYP) is a photosensitizing pigment from Hypericum perforatum that displays cytotoxic effects in neoplastic cell lines. Therefore, HYP is presently under consideration as a new anticancer drug in photodynamic therapy. Here, we investigated the mechanism of action of HYP photo-induced apoptosis of Jurkat cells compared to the cytostatic drug paclitaxel (PXL). Both photoactivated HYP and PXL similarly increased the activity of caspase-8 and caspase-3, and drug-induced apoptosis of Jurkat cells was completely blocked by inhibitors of caspase-8 (Z-IETD-FMK) and caspase-3 (Z-DEVD-FMK). The involvement of death receptors was analyzed using neutralizing monoclonal antibodies against Fas (SM1/23), FasL (NOK-2) and TNF-R1 (MAB225), and a polyclonal rabbit anti-human TNF-related apoptosis-inducing ligand (TRAIL) antiserum. TRAIL antibody blocked TRAIL-induced and HYP photo-induced, but not PXL-induced apoptosis of Jurkat cells. In contrast, PXL-induced, but not HYP-induced apoptosis was blocked by the SM1/23 and NOK-2 antibodies. Anti-TNF-R1 antibody had no effect. These findings suggest that HYP photo-induced apoptosis of Jurkat cells is mediated in part by the TRAIL/TRAIL-receptor system and subsequent activation of upstream caspases.  相似文献   

8.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation.  相似文献   

9.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), in the concentration range of 20 microM and above, induced arrest in the S-phase and apoptosis in the T cell-derived T-ALL lymphocytic leukemia cell line CEM-C7H2 which is deficient in functional p53 and p16. Expression of transgenic p16/INK4A, which causes arrest in G0/G1, markedly reduced the percentage of apoptotic cells. Antagonist antibodies to Fas or FasL, or constitutive expression of crmA did not diminish the extent of resveratrol-induced apoptosis. Furthermore, a caspase-8-negative, Fas-resistant Jurkat cell line was sensitive to resveratrol-induced apoptosis which could be strongly inhibited in the Jurkat as well as in the CEM cell line by z-VAD-fmk and z-IETD-fmk. The almost complete inhibition by z-IETD-fmk and the lack of inhibition by crmA suggested caspase-6 to be the essential initiator caspase. Western blots revealed the massive conversion of procaspase-6 to its active form, while caspase-3 and caspase-2 were proteolytically activated to a much lesser extent.  相似文献   

10.
MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis.   总被引:4,自引:0,他引:4  
Although the protease cascade initiated by Fas (CD95, Apo-1) is well characterized, there remains little known about how kinase pathways may impact on Fas-mediated apoptosis. We recently observed that in T lymphocytes Fas strongly induced activation of JNK (c-Jun N-terminal kinase) but not of second messengers leading to activation of ERK (extracellular regulated kinase). Additionally, Fas-mediated apoptosis was significantly inhibited with PMA, a potent activator of the ERK signaling pathway. This suggested a model whereby activation of the ERK pathway might attenuate Fas-mediated apoptosis. This was confirmed in the current study by showing that activation of MEK1, the upstream regulator of ERK, reduces Fas-mediated apoptosis, whereas inhibition of MEK1 augments apoptosis by Fas. Furthermore, Fas-mediated apoptosis of Jurkat T cells is not affected by constitutively active or dominant negative variants that modulate the JNK pathway. These results demonstrate that Fas-induced JNK activation is not required for apoptosis by Jurkat T cells, but rather is more likely secondary to cell stress during the early phases of apoptosis. This is supported by the ability of the caspase blocker zVAD to inhibit both apoptosis and JNK activation by Fas.  相似文献   

11.
Caspase-associated recruitment domains (CARDs) are protein interaction domains that participate in activation or suppression of CARD-carrying members of the caspase family of apoptosis-inducing proteases. A novel CARD-containing protein was identified that is overexpressed in some types of cancer and that binds and suppresses activation of procaspase-9, which we term TUCAN (tumor-up-regulated CARD-containing antagonist of caspase nine). The CARD domain of TUCAN selectively binds itself and procaspase-9. TUCAN interferes with binding of Apaf1 to procaspase-9 and suppresses caspase activation induced by the Apaf1 activator, cytochrome c. Overexpression of TUCAN in cells by stable or transient transfection inhibits apoptosis and caspase activation induced by Apaf1/caspase-9-dependent stimuli, including Bax, VP16, and staurosporine, but not by Apaf1/caspase-9-independent stimuli, Fas and granzyme B. High levels of endogenous TUCAN protein were detected in several tumor cell lines and in colon cancer specimens, correlating with shorter patient survival. Thus, TUCAN represents a new member of the CARD family that selectively suppresses apoptosis induced via the mitochondrial pathway for caspase activation.  相似文献   

12.
FAF1 has been introduced as a Fas-binding protein. However, the function of FAF1 in apoptotic execution is not established. Based on the fact that FAF1 is a Fas-binding protein, we asked if FAF1 interacted with other members of the Fas-death-inducing signaling complex (Fas-DISC) such as Fas-associated death domain protein (FADD) and caspase-8. FAF1 could interact with caspase-8 and FADD in vivo as well as in vitro. The death effector domains (DEDs) of caspase-8 and FADD interacted with the amino acid 181-381 region of FAF1, previously known to have apoptotic potential. Considering that FAF1 directly binds to Fas and caspase-8, FAF1 shows similar protein-interacting characteristics to that of FADD. In the coimmunoprecipitation with an anti-Fas antibody (APO-1) in Jurkat cells, endogenous FAF1 was associated with the precipitates in which caspase-8 was present. By confocal microscopic analysis, both Fas and FAF1 were detected in the cytoplasmic membrane before Fas activation, and in the cytoplasm after Fas activation. FADD and caspase-8 colocalized with Fas in Jurkat cells validating the presence of FAF1 in the authentic Fas-DISC. Overexpression of FAF1 in Jurkat cells caused significant apoptotic death. In addition, the FAF1 deletion mutant lacking the N terminus where Fas, FADD, and caspase-8 interact protected Jurkat cells from Fas-induced apoptosis demonstrating dominant-negative phenotype. Cell death by overexpression of FAF1 was suppressed significantly in both FADD- and caspase-8-deficient Jurkat cells when compared with that in their parental Jurkat cells. Collectively, our data show that FAF1 is a member of Fas-DISC acting upstream of caspase-8.  相似文献   

13.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

14.
Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway   总被引:6,自引:0,他引:6  
Galectin-9 (Gal-9) induced the apoptosis of not only T cell lines but also of other types of cell lines in a dose- and time-dependent manner. The apoptosis was suppressed by lactose, but not by sucrose, indicating that beta-galactoside binding is essential for Gal-9-induced apoptosis. Moreover, Gal-9 required at least 60 min of Gal-9 binding and possibly de novo protein synthesis to mediate the apoptosis. We also assessed the apoptosis of peripheral blood T cells by Gal-9. Apoptosis was induced in both activated CD4(+) and CD8(+) T cells, but the former were more susceptible than the latter. A pan-caspase inhibitor (Z-VAD-FMK) inhibited Gal-9-induced apoptosis. Furthermore, a caspase-1 inhibitor (Z-YVAD-FMK), but not others such as Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), and Z-AEVD-FMK (caspase-10 inhibitor), inhibited Gal-9-induced apoptosis. We also found that a calpain inhibitor (Z-LLY-FMK) suppresses Gal-9-induced apoptosis, that Gal-9 induces calcium (Ca(2+)) influx, and that either the intracellular Ca(2+) chelator BAPTA-AM or an inositol trisphosphate inhibitor 2-aminoethoxydiphenyl borate inhibits Gal-9-induced apoptosis. These results suggest that Gal-9 induces apoptosis via the Ca(2+)-calpain-caspase-1 pathway, and that Gal-9 plays a role in immunomodulation of T cell-mediated immune responses.  相似文献   

15.
Cycloheximide (CHX) can contribute to apoptotic processes, either in conjunction with another agent (e.g. tumor necrosis factor-alpha) or on its own. However, the basis of this CHX-induced apoptosis has not been clearly established. In this study, the molecular mechanisms of CHX-induced cell death were examined in two different human T-cell lines. In T-cells undergoing CHX-induced apoptosis (Jurkat), but not in T-cells resistant to the effects of CHX (CEM C7), caspase-8 and caspase-3 were activated. However, the Fas ligand was not expressed in Jurkat cells either before or after treatment with CHX, suggesting that the activation of these caspases does not involve the Fas receptor. To determine whether CHX-induced apoptosis was mediated by a Fas-associated death domain (FADD)-dependent mechanism, a FADD-DN protein was expressed in cells prior to CHX treatment. Its expression effectively inhibited CHX-induced cell death, suggesting that CHX-mediated apoptosis primarily involves a FADD-dependent mechanism. Since CHX treatment did not result in the induction of Fas or FasL, and neutralizing anti-Fas and anti-tumor necrosis factor receptor-1 antibodies did not block CHX-mediated apoptosis, these results may also indicate that FADD functions in a receptor-independent manner. Surprisingly, death effector filaments containing FADD and caspase-8 were observed during CHX treatment of Jurkat, Jurkat-FADD-DN, and CEM C7 cells, suggesting that their formation may be necessary, but not sufficient, for cell death.  相似文献   

16.
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.  相似文献   

17.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

18.
The CD95 (Fas/APO-1) death-inducing signaling complex (DISC) is essential for the initiation of CD95-mediated apoptotic and nonapoptotic responses. The CD95 DISC comprises CD95, FADD, procaspase-8, procaspase-10, and c-FLIP proteins. Procaspase-8 and procaspase-10 are activated at?the DISC, leading to the formation of active caspases and apoptosis initiation. In this study we analyzed the?stoichiometry of the CD95 DISC. Using quantitative western blots, mass spectrometry, and mathematical modeling, we reveal that the amount of DED proteins procaspase-8/procaspase-10 and c-FLIP at the DISC exceeds that of FADD by several-fold. Furthermore, our findings imply that procaspase-8, procaspase-10, and c-FLIP could form DED chains at the DISC, enabling the formation of dimers and efficient activation of caspase-8. Taken together, our findings provide an enhanced understanding of caspase-8 activation and initiation of apoptosis at the DISC.  相似文献   

19.
In the present study, we used mitochondrial DNA-depleted Jurkat subclones (rho0 cells) to demonstrate that Fas agonistic Ab (CH-11), at the concentrations that evoke apoptotic death of the parental Jurkat cells, induced necrosis mainly through generation of excess reactive oxygen species, lysosomal rupture, and sequential activation of cathepsins B and D, and in minor part through activation of receptor-interacting protein (RIP). In the rho0 cells treated with CH-11, ATP supplementation converted necrosis into apoptosis by the formation of the apoptosome and subsequent activation of procaspase-3. In these ATP-supplemented rho0 cells (ATP-rho0), generation of excess ROS and lysosomal rupture were still seen, yet cathepsins B and D were inactivated and RIP was degraded. The conversion of necrosis to apoptosis, RIP degradation, and cathepsin inactivation in ATP- rho0 cells were blocked by caspase-3 inhibitors. Activities of cathepsins B and D in the lysate of necrotic rho0 cells were inhibited by the addition of apoptotic parental Jurkat cell lysate. Thus, apoptosis may supercede necrosis.  相似文献   

20.
Myriadenolide is a diterpene that we have recently isolated from the extract of Alomia myriadenia (Asteraceae). Here we show for the first time that myriadenolide has caspase-dependent cytotoxic activity against human leukemia cells from both lymphocytic (Jurkat) and monocytic (THP-1) lineages, because preincubation of Jurkat or THP-1 cells with the broad-spectrum caspase inhibitor z-VAD-fmk completely abrogated cell death. Moreover, the mitochondrial pathway is implicated as mitochondrial depolarization and caspase-9 and caspase-3 activation were observed. Interestingly, caspase-8 and cleavage of the proapoptotic member of the Bcl-2 family BID was also observed during apoptosis induced by myriadenolide, suggesting a role for the caspase-8/BID pathway. However, interference with Fas or TNFR1 signaling did not interfere with apoptosis in our experimental system. Furthermore, pretreatment of cells with the caspase-3 inhibitor DEVD-fmk completely blocked the activation of caspase-8, suggesting that the activation of the caspase-8/BID pathway is part of an amplification loop initiated by caspase-3. Taken together, our results indicate myriadenolide as a novel candidate for the treatment of hematological malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号