首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have observed an abnormal genetic segregation in the progeny of crosses between males of the F71 (y wa/Y.w+) strain and females of various strains carrying marker mutations on their chromosome 2. The Y.w+ chromosome, previously described as possibly being associated with a translocation of the 22D region of chromosome 2, was shown to carry the 21A1-22E4 tip of the 2L chromosome. One chromosome 2 of F71 had a deletion of this region. The abnormal genetic segregation observed in the progeny of different crosses can be explained both by the partial lethality (which becomes severe in some homogeneous genetic backgrounds) due to trisomy of the 21A1-22E4 chromosome 2 fragment and by the lethality associated with monosomy of this 21A1-22E4 segment.  相似文献   

2.
Sheldahl LA  Weinreich DM  Rand DM 《Genetics》2003,165(3):1195-1208
Surveys of nucleotide polymorphism and divergence indicate that the average selection coefficient on Drosophila proteins is weakly positive. Similar surveys in mitochondrial genomes and in the selfing plant Arabidopsis show that weak negative selection has operated. These differences have been attributed to the low recombination environment of mtDNA and Arabidopsis that has hindered adaptive evolution through the interference effects of linkage. We test this hypothesis with new sequence surveys of proteins lying in low recombination regions of the Drosophila genome. We surveyed >3800 bp across four proteins at the tip of the X chromosome and >3600 bp across four proteins on the fourth chromosome in 24 strains of D. melanogaster and 5 strains of D. simulans. This design seeks to study the interaction of selection and linkage by comparing silent and replacement variation in semihaploid (X chromosome) and diploid (fourth chromosome) environments lying in regions of low recombination. While the data do indicate very low rates of exchange, all four gametic phases were observed both at the tip of the X and across the fourth chromosome. Silent variation is very low at the tip of the X (thetaS = 0.0015) and on the fourth chromosome (thetaS = 0.0002), but the tip of the X shows a greater proportional loss of variation than the fourth shows relative to normal-recombination regions. In contrast, replacement polymorphism at the tip of the X is not reduced (thetaR = 0.00065, very close to the X chromosome average). MK and HKA tests both indicate a significant excess of amino acid polymorphism at the tip of the X relative to the fourth. Selection is significantly negative at the tip of the X (Nes = -1.53) and nonsignificantly positive on the fourth (Nes approximately 2.9), analogous to the difference between mtDNA (or Arabidopsis) and the Drosophila genome average. Our distal X data are distinct from regions of normal recombination where the X shows a deficiency of amino acid polymorphism relative to the autosomes, suggesting more efficient selection against recessive deleterious replacement mutations. We suggest that the excess amino acid polymorphism on the distal X relative to the fourth chromosome is due to (1) differences in the mutation rate for selected mutations on the distal X or (2) a greater relaxation of selection from stronger linkage-related interference effects on the distal X. This relaxation of selection is presumed to be greater in magnitude than the difference in efficiency of selection between X-linked vs. autosomal selection.  相似文献   

3.
A characteristic feature of spider karyotypes is the predominance of unusual multiple X chromosomes. To elucidate the evolution of spider sex chromosomes, their meiotic behavior was analyzed in 2 major clades of opisthothele spiders, namely, the entelegyne araneomorphs and the mygalomorphs. Our data support the predominance of X(1)X(2)0 systems in entelegynes, while rare X(1)X(2)X(3)X(4)0 systems were revealed in the tuberculote mygalomorphs. The spider species studied exhibited a considerable diversity of achiasmate sex chromosome pairing in male meiosis. The end-to-end pairing of sex chromosomes found in mygalomorphs was gradually replaced by the parallel attachment of sex chromosomes in entelegynes. The observed association of male X univalents with a centrosome at the first meiotic division may ensure the univalents' segregation. Spider meiotic sex chromosomes also showed other unique traits, namely, association with a chromosome pair in males and inactivation in females. Analysis of these traits supports the hypothesis that the multiple X chromosomes of spiders originated by duplications. In contrast to the homogametic sex of other animals, the homologous sex chromosomes of spider females were already paired at premeiotic interphase and were inactivated until prophase I. Furthermore, the sex chromosome pairs exhibited an end-to-end association during these stages. We suggest that the specific behavior of the female sex chromosomes may have evolved to avoid the negative effects of duplicated X chromosomes on female meiosis. The chromosome ends that ensure the association of sex chromosome pairs during meiosis may contain information for discriminating between homologous and homeologous X chromosomes and thus act to promote homologous pairing. The meiotic behavior of 4 X chromosome pairs in mygalomorph females, namely, the formation of 2 associations, each composed of 2 pairs with similar structure, suggests that the mygalomorph X(1)X(2)X(3)X(4)0 system originated by the duplication of the X(1)X(2)0 system via nondisjunctions or polyploidization.  相似文献   

4.
Nondisjunction of X and of fourth chromosomes was observed following the exposure of immature oocytes of Drosophila melanogaster to doses of X-radiation of from 1000 to 4000 R. No evidence for a threshold was found in this range for either kind of trisomy; this evidence alone does not exclude the possibility that one might be found at some lower dose. The mating of the treated females with males having an attached-XY chromosome permitted the recovery of fertile males that would otherwise have been XO and sterile. Testing of these showed some 22% to be triplo-4, having two maternal fourth chromosomes. Marking the left arm of chromosome 4 with a small duplication made it possible to score marker losses such as might result from interchange with another acrocentric (e.g., the X). There is a high coincidence of marker loss from chromosome 4 and both the XO and triplo-4 conditions, with the highest incidence of marker loss being when these have occurred together. The interpretation that the altered 4's are half-translocations resulting from X-4 interchange is further supported by the finding that they also show altered assortative behavior in compound-X females lacking a Y, when in combination with a standard fourth chromosome. A few show regular segregation from the attached-XY in the male, supporting the interpretation that they have the base of the X capped by the right arm of chromosome 4. It is argued that other trisomies may come about by mechanisms similar to that responsible for the triplo-4 condition. Furthermore, if rearrangement plays a part in the origin of trisomy, operating by altering division-I orientation as a result of heterologous conjunction maintained by chromatid interchange, it is unlikely that there will be a threshold for its induction.  相似文献   

5.
Ellobius lutescens carries an apparently identical karyotype (2n = 17) in both sexes. On the basis of indirect evidence the unpaired chromosome 9 has been considered to represent the X chromosome of this species. We have obtained data to substantiate this view by four different techniques. After fusion of HPRT RAG cells with E. lutescens fibroblasts we demonstrated that the enzymes HPRT and G6PD are localized on the presumptive X chromosome. By analysis of pachytene figures after silver staining we showed by electron microscopy that the single chromosome exhibits the typical features of an X chromosome in male meiosis. Hybridization of (GATA)4 and (GACA)4 oligonucleotide probes to E. lutescens DNA revealed several distinct bands in the high molecular weight range some of which appeared to be specific for the individual but not for the sex of the animal. Hybridization in situ of the (GATA)4 probe on metaphase spreads of E. lutescens did not highlight any particular chromosome segment but showed a significant deficit of these sequences in chromosome 9. These observations are discussed with respect to their bearing on X chromosome determination. Finally it is concluded that E. lutescens should be an ideal tool for testing candidate genes assumed to be involved in primary sex determination.  相似文献   

6.
A study of approximately 300 plants in the taxonomic species B. lineariloba is reported. Five biological species differing in chromosome number exist in this species complex. The species with the lowest number (species A, n = 2) often carries B chromosomes, which may be large, or minute. It also exists in three racial forms which differ in karyotype. Observations on naturally occurring hybrids in zones of overlap show that two of the races differ by an unequal interchange. — The species with n = 8 (species C) is probably of amphidiploid origin from the cross A X B. Species B, E and D, with n = 6, 5 and 4 respectively, may represent a series of reductions in chromosome number. They show close karyotypic relationships. The relationship of species A with D, E and B is obscure.  相似文献   

7.
Reversion mutagenesis of three single P elements located in the cytogenetic interval 1E-2A at the tip of the X chromosome of Drosophila melanogaster was used to recover new deletions in this chromosomal region. The deletions obtained include small aberrations within region 2A and larger lesions extending from 2A into 1E and 1B. All three screens also yielded terminal deficiencies. The new deficiencies, together with previously characterized rearrangements, were analyzed for their complementation behaviour with the maternal effect locus fs(1)Nasrat and lethal loci in the region. These analyses provide an overall genetic map of the interval 1E-2A. In addition, the smaller deletions were physically mapped within cloned genomic DNA of the 2A region.  相似文献   

8.
The alpha, beta and gamma polypeptides that make up Drosophila Larval Serum Protein-1 seem to be coded for by genes that have evolved by duplication of a common ancestral gene. We have found variants of all three polypeptides, and these are variants of the coding sequences. The alpha-chain variant mapped to 39.5 on the X chromosome and to the polytene interval 11A7-11B9. The beta-chain variant mapped to 1.9 on chromosome 2L and to 21D2-22A1. The gamma-chain variant was mapped as 0.13 map units from the tip of chromosome 3L or to --1.41 with respect to ru, which has been defined as 0.0, and to 61A1-61A6.  相似文献   

9.
Kertesz N  Samson J  Debacker C  Wu H  Labastie MC 《Gene》2002,292(1-2):13-24
Topography of three genetic elements--dystrophin (dmd) exons 5-7 (E(1)), 46-47 (E(2)), and centromere of chromosome X (N(X)) were studied relative to cell nuclei and to chromosome X territories of spatially fixed human lymphocytes. Repeated three-dimensional (3D) dual color fluorescence in situ hybridization combined with high-resolution cytometry was used. In addition, the nuclear location of fluorescence weight centers (FWC), spatial volume, and maximal area per one section of chromosome-X territories were investigated. The larger (X(L)) and smaller (X(S)) homologous X-chromosomes were distinguished for each nucleus according to the 3D volume of their territories. The distributions of the [center of nucleus]-to-[genetic element] distances (radial distributions) of dmd exons E(1), E(2), centromere N(X) and FWC were very similar for both homologous X-chromosomes of female lymphocytes as well as for the chromosome X of the human male. On the other hand, larger average mutual distances between all pairs of signals (E(1), E(2), N(X), FWC) and larger average maximal area were observed for the larger chromosome (X(L)) in comparison with the smaller one (X(S)). The territory of the larger homologue showed also more irregular surface. The most significant differences between homologous X-chromosomes were found for N(X)-E(1), N(X)-E(2) and E(1)-E(2) distances that were in average about twice longer for X(L) as compared with X(S). These parameters correlate to each other and can be used for the reliable determination of more (de)condensed X-chromosome territory. The longer E(1)-E(2) distances for X(L) indicate more open chromatin structure of the dystrophin gene on this chromosome in contrary to closed structure on X(S). Substantially shorter distances of the dystrophin exons from the centromeric heterochromatin in X(S) as compared to X(L) can be explained by silencing effect of centromeres as described in Nature 1 (2000) 137.  相似文献   

10.
Stenberg P  Larsson J 《Chromosoma》2011,120(3):213-225
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.  相似文献   

11.
Several studies of intraspecific and interspecific DNA sequence variation from Drosophila loci have revealed a pattern of low intraspecific variation from genomic regions of low recombination. The mechanisms consistently invoked to explain these patterns are the selective sweep of advantageous mutations together with genetic hitchhiking of linked loci. To examine the effect of selective sweeps on genetic divergence during speciation, we studied two loci in different genomic regions thought to be subject to selective sweeps. We obtained DNA sequences from 1.1kb pair portions of the fourth chromosome locus cubitus interruptus Dominant (ciD) and from the asense locus near the telomere of the X chromosome. At ciD, we found very low variation among multiple lines of Drosophila mauritiana and D. sechellia. This finding is consistent with an earlier report of very low variation in D. melanogaster and D. simulans at ciD and supports the conclusion of selective sweeps and genetic hitchhiking on the nonrecombining fourth chromosome. The pattern of variation found at asense suggests that a selective sweep has occurred recently at the tip of the X chromosome in D. simulans, but not in D. melanogaster or D. mauritiana. The data from ciD and asense are compared with data from three X chromosome loci (period, zeste, and yolk protein 2) that experience normal levels of recombination. By examining estimated genealogies and the rates at which different classes of mutations have accumulated, we conclude that selective sweeps are common occurrences on the fourth chromosome but less common near the tip of the X chromosome. An interesting pattern of low variation at ciD among D. simulans, D. mauritiana, and D. sechellia suggests that a selective sweep may have occurred among these forms even after divergence into separate species had begun.  相似文献   

12.
Relative amounts of nuclear DNA were determined in root tip cells of seven species of Astereae: Aster hydrophilus Greene, A. oblongifolius Nutt., A. riparius H.B.K., Machaeranthera boltoniae (Greene) Turner and Home, M. brevilingulata (Sch-Bip.) Turner and Home, M. parviflora Gray, and M. tenuis (S. Wats.) Turner and Home. The results show that A. hydrophilus and M. brevilingulata, with a chromosome number of n = 9, have less nuclear DNA than other closely related species which are either n = 4 or n = 5. Cytological analyses of meiosis in the intergeneric hybrid M. parviflora X A. hydrophilus showed cells with two or more small chromosomes of the latter species pairing with single large chromosomes of the former. Pachytene cells of the hybrids M. parviflora X A. hydrophilus, M. parviflora X A. riparius, and M. boltoniae X M. tenuis showed some unpaired chromosome segments. The significance of these results to chromosome evolution in the tribe Astereae is discussed.  相似文献   

13.
A hybrid cell line (R21/B1) containing a truncated human chromosome 6 (6pter-6q21) and a human Y chromosome on a hamster background was irradiated and fused to A23 (TK-) or W3GH (HPRT-) hamster cells. Clones containing expressed HLA class I genes (4/40) were selected using monoclonal antibodies. These clones were recloned and analyzed with a panel of probes from the HLA region. One hybrid (4G6) contained the entire HLA complex. Two other hybrids (4J4 and 4H2) contained only the HLA class I region, while the fourth hybrid (5P9) contained HLA class I and III genes in addition to other genes located in the 6p21 chromosomal region. In situ hybridization showed that the hybrid cells contained more than one fragment of human DNA. Alu and LINE PCR products were derived from these cells and compared to each other as well as to products from two somatic cell hybrids having the 6p21 region in common. The PCR fragments were then screened on conventional Southern blots of the somatic cell hybrids to select a panel of novel probes encompassing the 6p21 region. In addition, the origin of the human DNA fragments in hybrid 4J4 was determined by regional mapping of PCR products.  相似文献   

14.
P. Portin  M. Rantanen 《Genetica》1990,82(3):203-207
The second chromosome inversion In (2L+2R) Cy in a heterozygous condition was studied for its effect on frequency and interference of crossing over in three different regions of the X chromosome of Drosophila melanogaster. A significant increase in crossing over frequency was observed in the proximal and distal regioins of the X chromosome while in the middle of the chromosome crossing over frequency remained unaltered. The effect on interference remained unaltered at both ends of the X chromosome while a significant decrease was observed in the middle of the chromosome. These results suggest that the interchromosomal effect on crossing over affects the preconditions of exchange differently in different regions of the X chromosome, and possibly the duration of chromosome pairing.  相似文献   

15.
We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobre?a and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species.  相似文献   

16.
Reciprocal chromosome translocations are common de novo rearrangements that occur randomly throughout the human genome. To learn about causative mechanisms, we have cloned and sequenced the breakpoints of a cytologically balanced constitutional reciprocal translocation, t(X;4)(p21.2;q31.22), present in a girl with Duchenne muscular dystrophy (DMD). Physical mapping of the derivative chromosomes, after their separation in somatic cell hybrids, reveals that the translocation disrupts the DMD gene in Xp21 within the 18-kb intron 16. Restriction mapping and sequencing of clones that span both translocation breakpoints as well as the corresponding normal regions indicate the loss of approximately 5 kb in the formation of the derivative X chromosome, with 4-6 bp deleted from chromosome 4. RFLP and Southern analyses indicate that the de novo translocation is a paternal origin and that the father's X chromosome contains the DNA that is deleted in the derivative X. Most likely, deletion and translation arose simultaneously from a complex rearrangement event that involves three chromosomal breakpoints. Short regions of sequence homology were present at the three sites. A 5-bp sequence, GGAAT, found exactly at the translocation breakpoints on both normal chromosomes X and 4, has been preserved only on the der(4) chromosome. It is likely that the X-derived sequence GGAATCA has been lost in the formation of the der(X) chromosome, as it matches an inverted GAATCA sequence present on the opposite strand exactly at the other end of the deleted 5-kb fragment. These findings suggest a possible mechanism which may have juxtaposed the three sites and mediated sequence-specific breakage and recombination between nonhomologous chromosomes in male meiosis.  相似文献   

17.
We produced ten wheat–Leymus racemosus chromosome addition lines. Eight chromosomes (A, C, F, H, I, J, k, and l) were recovered as disomic additions and two (E and n) as monosomic. Screening of the addition lines was done by fluorescence in situ hybridization using several repetitive sequences as probes, which allowed us to identify different L. racemosus chromosomes and find many aberrant L. racemosus chromosomes. RFLP analysis revealed partial conservation of homology between L. racemosus and wheat chromosomes, depending on the homologous groups. Chromosomes A and l belonged to group 2, chromosomes C and I to group 5, and chromosome k to group 6. Chromosomes H and J were a mixture of groups 1, 3, and 7, chromosome n of groups 3 and 7, and chromosomes E and F were of group 4 and others. Comparison of our addition lines with other addition lines showed large cytological differences.Communicated by B. Friebe  相似文献   

18.
Many species of grasshopper have an XX/XO sex chromosome system, including Tropidacris cristata grandis (23, XX/XO). The X chromosome behaves differently from the autosomes, but little is known about its origin and molecular composition. To better understand the genomic composition and evolutionary processes involved in the origin of the sex chromosomes, we undertook an analysis of its meiotic behavior, heterochromatin distribution and microdissection in T. c. grandis. Analysis of meiotic cells revealed a difference in the behavior of the X chromosome compared to the autosomes, with different patterns of condensation and cellular arrangement. Heterochromatic terminal blocks were predominant. The chromosome painting revealed a bright block in the centromeric/pericentromeric region of the X chromosome and slight markings in the other regions. In the autosomes, the X chromosome probe hybridized in the centromeric/pericentromeric region, and hybridization signals on terminal regions corresponding to the heterochromatic regions were also observed. The results showed that the X chromosome contains a significant amount of repetitive DNA. Based on the hybridization pattern, it is possible that the autosomes and sex chromosomes of T. c. grandis have a similar composition of repetitive DNAs, which could mean that the X chromosome has an autosomal origin.  相似文献   

19.
戴和平  邓汉湘 《遗传学报》1992,19(4):298-303
本文对三例X染色体结构异常46,X,dup(X)(p21);46,X,del(X)(p11);46,X,i(Xq)患者及其父母,用X染色体短臂或长臂上的限制性片段长度多态性(RFLPs)作为遗传标记,研究了异常X染色体的起源和形成机理。结果表明,dup(X)(p21)和del(X)(p11)起源于父方,而i(Xq)起源于母方。dup(X)(p21)是由X染色体姊妹染色单体不均等的互换所引起的,del(X)(p11)是由于X染色体断裂后丢失所致,i(Xq)的发生是由于卵母细胞X染色体着丝粒错分裂。  相似文献   

20.
Canio G. Vosa 《Chromosoma》1970,31(4):446-451
Mitotic and salivary gland chromosomes of D. melanogaster show striking fluorescent patterns when stained with Quinacrine. In the salivary gland chromosomes there are up to five strongly fluorescing bands located on the fourth chromosome and at the proximal end of the X chromosome.—In mitotic cells the Y chromosome shows four fluorescent segments and other fluorescent regions are found proximally on the third pair and on the X chromosome. It is, therefore, possible to distinguish male and female interphase cells by their patterns of fluorescence.—A comparison between the position of heterochromatic, late replicating and fluorescing segments in the mitotic chromosomes, shows differences which demonstrate, for the first time, the chemical, morphological and genetical diversity of these three types of segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号