首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work we continue our study of the biochemical responses of respiratory epithelial cells to infection with human paramyxovirus pathogens. In our earlier studies, we detected elevated concentrations of the proinflammatory chemokines MIP-1alpha and IL-8 in upper and lower respiratory tract secretions from patients infected with respiratory syncytial virus (RSV). Here we demonstrate the same trend for individuals infected with parainfluenza virus (PIV), with elevated concentrations of MIP-1alpha and IL-8 (means of 309 +/- 51 and 2280 +/- 440 pg/ml/mg protein, respectively) detected in nasal wash samples from 17 patients with culture-positive PIV. Similar to our findings with RSV, cells of the HEp-2 epithelial line and primary cultures of human bronchial epithelial cells respond to PIV infection with production and release of both MIP-1alpha and IL-8. Addition of the glucocorticoid anti-inflammatory agent hydrocortisone (200-1000 ng/ml) attenuated the production of MIP-1alpha and IL-8 in PIV-infected cells while having minimal to no effect on the production of these mediators from cells infected with RSV. Neither virus infection resulted in a change in the total cellular concentration of glucocorticoid receptors, nor did hydrocortisone exert any differential effect on viral replication. As repression of chemokine production by epithelial cells is likely to result in diminished recruitment of proinflammatory leukocytes, these results may explain in part why glucocorticoid therapy reduces the symptoms associated with acute PIV infection, but have little to no effect in the overall outcome in the case of RSV.  相似文献   

3.
4.
Although Brucella frequently infects humans through inhalation, its interaction with pulmonary cells has been overlooked. We examined whether human lung epithelial cells produce proinflammatory mediators in response to Brucella infection. Infection with smooth or rough strains of Brucella abortus induced the secretion of IL-8 and GM-CSF by the bronchial epithelial cell lines Calu-6 and 16HBE14o-, but not by the alveolar epithelial cell line A549. Infected Calu-6 cells also produced low levels of MCP-1. Since monocyte-derived cytokines may induce chemokine secretion in epithelial cells, cocultures of human monocytes (THP-1 cell line) and respiratory epithelial cells were used to study such interaction. IL-8 and MCP-1 levels in B. abortus-infected THP-1:A549 and THP-1:Calu-6 cocultures, and MCP-1 levels in THP-1:16HBE14o- cocultures, were higher than those detected in infected epithelial monocultures. Conditioned medium from infected monocytes induced the secretion of IL-8 and/or MCP-1 by A549 and Calu-6 cells, and these effects were mainly mediated by IL-1 (in A549 cells) or TNF-α (in Calu-6 cells). Conversely, culture supernatants from Brucella-infected bronchial epithelial cells induced MCP-1 production by monocytes, an effect largely mediated by GM-CSF. This study shows that human lung epithelial cells mount a proinflammatory response to Brucella, either directly or after interaction with Brucella-infected monocytes.  相似文献   

5.
6.
Neurocysticercosis, caused by infection with larval Taenia solium, is a major cause of epilepsy worldwide. Larval degeneration, which is symptomatic, results in inflammatory cell influx. Astrocytes, the most abundant cell type and major cytokine-producing cell within the CNS, may be important in orchestrating inflammatory responses after larval degeneration. We investigated the effects of direct stimulation and of conditioned medium from T. solium larval Ag (TsAg)-stimulated monocytes (CoMTsAg) on neutrophil and astrocyte chemokine release. CoMTsAg, but not control conditioned medium, stimulated astrocyte CCL2/MCP-1 (161.5 +/- 16 ng/ml), CXCL8/IL-8 (416 +/- 6.2 ng/ml), and CXCL10/IFN-gamma-inducible protein (9.07 +/- 0.6 ng/ml) secretion after 24 h, whereas direct astrocyte or neutrophil stimulation with TsAg had no effect. There was rapid accumulation of CCL2 and CXCL8 mRNA within 1 h, with somewhat delayed expression of CXCL10 mRNA initially detected 8 h poststimulation. Neutralizing anti-TNF-alpha inhibited CoMTsAg-induced CCL2 mRNA accumulation by up to 99%, causing total abolition of CXCL10 and up to 77% reduction in CXCL8 mRNA. CoMTsAg induced maximal nuclear binding of NF-kappaB p65 and p50 by 1 h, with IkappaBalpha and IkappaBbeta decay within 15 min. In addition, CoMTsAg induced transient nuclear binding of AP-1, which peaked 4 h poststimulation. In NF-kappaB blocking experiments using pyrrolidine dithiocarbamate, CoMTsAg-induced CCL2 secretion was reduced by up to 80% (p = 0.0006), whereas CXCL8 was inhibited by up to 75% (p = 0.0003). In summary, the data show that astrocytes are an important source of chemokines following larval Ag stimulation. Such chemokine secretion is NF-kappaB dependent, likely to involve AP-1, and is regulated in a paracrine loop by monocyte-derived TNF-alpha.  相似文献   

7.
8.
9.
10.
11.
12.
13.
CCL5 (or RANTES (regulated upon activation, normal T cell expressed and secreted)) recruits T lymphocytes and monocytes. The source and regulation of CCL5 in pulmonary tuberculosis are unclear. Infection of the human alveolar epithelial cell line (A549) by Mycobacterium tuberculosis caused no CCL5 secretion and little monocyte secretion. Conditioned medium from tuberculosis-infected human monocytes (CoMTB) stimulated significant CCL5 secretion from A549 cells and from primary alveolar, but not upper airway, epithelial cells. Differential responsiveness of small airway and normal human bronchial epithelial cells to CoMTB but not to conditioned medium from unstimulated human monocytes was specific to CCL5 and not to CXCL8. CoMTB induced CCL5 mRNA accumulation in A549 cells and induced nuclear translocation of nuclear factor kappaB (NFkappaB) subunits p50, p65, and c-rel at 1 h; nuclear binding of activator protein (AP)-1 (c-Fos, FosB, and c-Jun) at 4-8 h; and binding of NF-interleukin (IL)-6 at 24 h. CCL5 promoter-reporter analysis using deletion and site-specific mutagenesis constructs demonstrated a key role for AP-1, NF-IL-6, and NFkappaB in driving CoMTB-induced promoter activity. The IL-1 receptor antagonist inhibited A549 and small airway epithelial cell CCL5 secretion, gene expression, and promoter activity. CoMTB contained IL-1beta, and recombinant IL-1beta reproduced CoMTB effects. Monocyte alveolar, but not upper airway, epithelial cell networks in pulmonary tuberculosis cause AP-1-, NF-IL-6-, and NFkappaB-dependent CCL5 secretion. IL-1beta is the critical regulator of tuberculosis-stimulated CCL5 secretion in the lung.  相似文献   

14.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

15.
The aim of this study was to investigate whether respiratory syncytial virus persistence regulates interleukin 8 (IL-8) mRNA synthesis and protein secretion in a human lung epithelial cell line (A549). Therefore, we established RSV persistence in these cells (A549per) and determined the levels of interleukin-8 mRNA by RT-PCR and of protein through ELISA. Interleukin-8 mRNA synthesis and protein secretion were continuously up-regulated in A549per cells during passages and in A549 cells that had been incubated with supernatants (cA549per) obtained from A549per passages. These results suggested that the enhancement of interleukin-8 was stimulated either by the presence of the RSV genome in the cell or by soluble mediator(s) induced by RSV, which, in turn, increased interleukin-8 mRNA synthesis and protein secretion. Soluble RSV F and G proteins were identified as mediators. Moreover, interleukin-8 enhancement was observed after 1-min incubation with the soluble mediators, thus suggesting that interleukin-8 up-regulation was triggered by receptor-ligand interaction.  相似文献   

16.
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells, causing bronchiolitis, upper respiratory infections, asthma exacerbations, chronic obstructive pulmonary disease exacerbations, and pneumonia in immunocompromised hosts. A replication intermediate of RSV is dsRNA. This is an important ligand for both the innate immune receptor, TLR3, and protein kinase R (PKR). One known effect of RSV infection is the increased responsiveness of airway epithelial cells to subsequent bacterial ligands (i.e., LPS). In this study, we examined a possible role for RSV infection in increasing amounts and responsiveness of another TLR, TLR3. These studies demonstrate that RSV infection of A549 and human tracheobronchial epithelial cells increases the amounts of TLR3 and PKR in a time-dependent manner. This leads to increased NF-kappaB activity and production of the inflammatory cytokine IL-8 following a later exposure to dsRNA. Importantly, TLR3 was not detected on the cell surface at baseline but was detected on the cell surface after RSV infection. The data demonstrate that RSV, via an effect on TLR3 and PKR, sensitizes airway epithelial cells to subsequent dsRNA exposure. These findings are consistent with the hypothesis that RSV infection sensitizes the airway epithelium to subsequent viral and bacterial exposures by up-regulating TLRs and increasing their membrane localization.  相似文献   

17.
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normal T-cells expressed and secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study we investigated the role of reactive oxygen species in the induction of RANTES gene expression in human type II alveolar epithelial cells (A549), following RSV infection. Our results indicate that RSV infection of airway epithelial cells rapidly induces reactive oxygen species production, prior to RANTES expression, as measured by oxidation of 2',7'-dichlorofluorescein. Pretreatment of airway epithelial cells with the antioxidant butylated hydroxyanisol (BHA), as well a panel of chemically unrelated antioxidants, blocks RSV-induced RANTES gene expression and protein secretion. This effect is mediated through the ability of BHA to inhibit RSV-induced interferon regulatory factor binding to the RANTES promoter interferon-stimulated responsive element, that is absolutely required for inducible RANTES promoter activation. BHA inhibits de novo interferon regulator factor (IRF)-1 and -7 gene expression and protein synthesis, and IRF-3 nuclear translocation. Together, these data indicates that a redox-sensitive pathway is involved in RSV-induced IRF activation, an event necessary for RANTES gene expression.  相似文献   

18.
A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-kappaB-inducing kinase (NIK) in the activation of NF-kappaB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous approximately 50-kDa NF-kappaB2 substrate. Because NIK associates with IKKalpha to mediate processing of the 100-kDa NF-kappaB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKalpha and NF-kappaB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKalpha, and both 100 kDa- and 52-kDa NF-kappaB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-kappaB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-kappaB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-kappaB2 processing and interfered with the early activation of a subset of NF-kappaB-dependent genes, indicating the importance of this activation pathway in the genomic NF-kappaB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-kappaB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKalpha and processed NF-kappaB2.  相似文献   

19.
Lung inflammation resulting from bacterial infection of the respiratory mucosal surface in diseases such as cystic fibrosis and pneumonia contributes significantly to the pathology. A major consequence of the inflammatory response is the recruitment and accumulation of polymorphonuclear cells (PMNs) at the infection site. It is currently unclear what bacterial factors trigger this response and exactly how PMNs are directed across the epithelial barrier to the airway lumen. An in vitro model consisting of human PMNs and alveolar epithelial cells (A549) grown on inverted Transwell filters was used to determine whether bacteria are capable of inducing PMN migration across these epithelial barriers. A variety of lung pathogenic bacteria, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa are indeed capable of inducing PMN migration across A549 monolayers. This phenomenon is not mediated by LPS, but requires live bacteria infecting the apical surface. Bacterial interaction with the apical surface of A549 monolayers results in activation of epithelial responses, including the phosphorylation of ERK1/2 and secretion of the PMN chemokine IL-8. However, secretion of IL-8 in response to bacterial infection is neither necessary nor sufficient to mediate PMN transepithelial migration. Instead, PMN transepithelial migration is mediated by the eicosanoid hepoxilin A3, which is a PMN chemoattractant secreted by A549 cells in response to bacterial infection in a protein kinase C-dependent manner. These data suggest that bacterial-induced hepoxilin A3 secretion may represent a previously unrecognized inflammatory mechanism occurring within the lung epithelium during bacterial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号