首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymocyte selection involves signaling by TCR engaging diverse self-peptide:MHC molecule ligands on various cell types in the cortex and medulla. Here we separately analyze early and late stages of selection to better understand how presenting cell type, ligand quality, and the timing of TCR signaling contribute to intrathymic differentiation. TCR transgenic CD4+CD8+ thymocytes (double positive (DP)) from MHC-deficient mice were stimulated using various presenting cells and ligands. The resulting CD69high cells were isolated and evaluated for maturation in reaggregate cultures with wild-type or MHC molecule-deficient thymic stroma with or without added hemopoietic dendritic cells (DC). Production of CD4+ T cells required TCR signaling in the reaggregates, indicating that transient recognition of self-ligands by DP is inadequate for full differentiation. DC bearing a potent agonist ligand could initiate positive selection, producing activated thymocytes that matured into agonist-responsive T cells in reaggregates lacking the same ligand. DC could also support the TCR signaling necessary for late maturation. These results argue that despite the negative role assigned to DC in past studies, neither the peptide:MHC molecule complexes present on DC nor any other signals provided by these cells stimulate only thymocyte death. These findings also indicate that unique epithelial ligands are not necessary for positive selection. They provide additional insight into the role of ligand quality in selection events and support the concept that following initiation of maturation from the DP state, persistent TCR signaling is characteristic of and perhaps required by T cells.  相似文献   

2.
The differentiation of double-positive (DP) CD4(+)CD8(+) thymocytes to single-positive CD4(+) or CD8(+) T cells is regulated by signals that are initiated by coengagement of the Ag (TCR) and costimulatory receptors. CD28 costimulatory receptors, which augment differentiation and antiapoptotic responses in mature T lymphocytes, have been reported to stimulate both differentiation and apoptotic responses in TCR-activated DP thymocytes. We have used artificial APCs that express ligands for TCR and CD28 to show that CD28 signals increase expression of CD69, Bim, and cell death in TCR-activated DP thymocytes but do not costimulate DP thymocytes to initiate the differentiation program. The lack of a differentiation response is not due to defects in CD28-initiated TCR proximal signaling events but by a selective defect in the activation of ERK MAPK. To characterize signals needed to initiate the death response, a mutational analysis was performed on the CD28 cytoplasmic domain. Although mutation of all of CD28 cytoplasmic domain signaling motifs blocks cell death, the presence of any single motif is able to signal a death response. Thus, there is functional redundancy in the CD28 cytoplasmic domain signaling motifs that initiate the thymocyte death response. In contrast, immobilized Abs can initiate differentiation responses and cell death in DP thymocytes. However, because Ab-mediated differentiation occurs through CD28 receptors with no cytoplasmic domain, the response may be mediated by increased adhesion to immobilized anti-TCR Abs.  相似文献   

3.
Selection processes in the thymus eliminate nonfunctional or harmful T cells and allow the survival of those cells with the potential to recognize Ag in association with self-MHC-encoded molecules (Ag/MHC). We have previously demonstrated that thymus-derived glucocorticoids antagonize TCR-mediated deletion, suggesting a role for endogenous thymic glucocorticoids in promoting survival of thymocytes following TCR engagement. Consistent with this hypothesis, we now show that inhibition of thymus glucocorticoid biosynthesis causes an increase in thymocyte apoptosis and a decrease in recovery that are directly proportional to the number of MHC-encoded molecules present and, therefore, the number of ligands available for TCR recognition. Expression of CD5 on CD4+CD8+ thymocytes, an indicator of TCR-mediated activation, increased in a TCR- and MHC-dependent manner when corticosteroid production or responsiveness was decreased. These results indicate that thymus-derived glucocorticoids determine where the window of thymocyte selection occurs in the TCR avidity spectrum by dampening the biological consequences of TCR occupancy and reveal that glucocorticoids mask the high percentage of self-Ag/MHC-reactive thymocytes that exist in the preselection repertoire.  相似文献   

4.
Thymic epithelial cells are uniquely efficient in mediating positive selection, suggesting that in addition to providing peptide/MHC complexes for TCR ligation, they may also provide additional support for this process. Recent studies have shown that although engagement of either the TCR or glucocorticoid (GC) receptors can individually induce apoptosis in thymocytes, together these signals are mutually antagonistic. This had led to the suggestion that local GC production by thymic epithelial cells, by opposing TCR signaling for apoptosis, provides the basis of the ability of these cells to mediate thymocyte positive selection. In this paper we have examined this possibility directly and shown that highly purified cortical epithelial cells, which have the functional ability to mediate positive selection in reaggregate cultures, do not express mRNA for the key steroidogenic enzyme P405scc. Thus we conclude that the ability of thymic epithelial cells to support positive selection does not rely on their ability to produce GC. However, we find that P450scc mRNA is up-regulated in thymocytes on the initiation of positive selection, raising the possibility that any local protective effect of steroid production is mediated at the level of thymocytes themselves.  相似文献   

5.
Positive selection during thymocyte development is driven by the affinity and avidity of the TCR for MHC-peptide complexes expressed in the thymus. In this study, we show that programmed death-1 (PD-1), a member of the B7/CD28 family of costimulatory receptors, inhibits TCR-mediated positive selection through PD-1 ligand 1 (PD-L1):PD-1 interactions. Transgenic mice that constitutively overexpress PD-1 on CD4+CD8+ thymocytes display defects in positive selection in vivo. Using an in vitro model system, we find that PD-1 is up-regulated following TCR engagement on CD4+CD8+ murine thymocytes. Coligation of TCR and PD-1 on CD4+CD8+ thymocytes with a novel PD-1 agonistic mAb inhibits the activation of ERK and up-regulation of bcl-2, both of which are downstream mediators essential for positive selection. Inhibitory signals through PD-1 can overcome the ability of positive costimulators, such as CD2 and CD28, to facilitate positive selection. Finally, defects in positive selection that result from PD-1 overexpression in thymocytes resolve upon elimination of PD-L1, but not PD-1 ligand 2, expression. PD-L1-deficient mice have increased numbers of CD4+CD8+ and CD4+ thymocytes, indicating that PD-L1 is involved in normal thymic selection. These data demonstrate that PD-1:PD-L1 interactions are critical to positive selection and play a role in shaping the T cell repertoire.  相似文献   

6.
T-cell receptors (TCRs) are created by a stochastic gene rearrangement process during thymocyte development, generating thymocytes bearing useful, as well as unwanted, specificities. Within the latter group, autoreactive thymocytes arise which are subsequently eliminated via a thymocyte-specific apoptotic mechanism, termed negative selection. The molecular basis of this deletion is unknown. Here, we show that TCR triggering by peptide/MHC ligands activates a caspase in double-positive (DP) CD4+ CD8+ thymocytes, resulting in their death. Inhibition of this enzymatic activity prevents antigen-induced death of DP thymocytes in fetal thymic organ culture (FTOC) from TCR transgenic mice as well as apoptosis induced by anti-CD3epsilon monoclonal antibody and corticosteroids in FTOC of normal C57BL/6 mice. Hence, a common caspase mediates immature thymocyte susceptibility to cell death.  相似文献   

7.
The introduction of a soluble TCR (sTCR) recognizing class I major histocompatibility complex (MHC) in the fetal thymic microenvironment in vitro produces the selection of thymocytes with enhanced avidity for self class I MHC (8). The sTCR was supposed to impose enhanced avidity for self MHC at an early degenerate phase of TCR-driven selection. This could determine increased reactivity to self at later stages of differentiation when specificity of TCR-ligand interaction augments and the effect of sTCR vanishes. This hypothesis was based on the observed deletion of CD4+8+ thymocytes upon upregulation of TCR and the increase in cell size of some CD8+ cells which are expanded in long-term fetal thymus organ cultures (FTOC) as well as in the periphery of adoptively transferred nude mice. Here we show that the developing alphabeta thymocyte which does not express CD8 at the cell surface has a selective advantage in FTOC with sTCR, thus suggesting that participation of CD8 in self peptide/MHC recognition confers specificity to T-cell selection and results in excessive signaling in thymocytes in spite of the presence of sTCR.  相似文献   

8.
Positive selection of T cells is postulated to be dependent on the counterinteraction between glucocorticoid receptor (GR)- and T-cell-receptor (TCR)-induced death signals. In this study we used T-cell-specific expression of p300 to investigate whether GR-TCR cross talk between thymocytes was affected. Activation of the p300-transgenic T cells led to enhanced thymocyte proliferation and increased interleukin 2 production. Thymocyte death, induced by TCR engagement, was no longer prevented by dexamethasone in p300-transgenic mice, indicating an absence of GR-TCR cross-inhibition. This was accompanied by a 50% reduction in the number of thymocytes in p300-transgenic mice. However, the CD4/CD8 profile of thymocytes remained unchanged in p300-transgenic mice. There was no effect on positive selection of the bulk thymocytes or thymocytes with transgenic TCR in p300-transgenic mice. In addition, there was no apparent TCR repertoire "hole" in the selected antigens examined. Our results illustrate a critical role of CBP/p300 in thymic GR-TCR counterinteraction yet do not support the involvement of GR-TCR antagonism in thymocyte positive selection.  相似文献   

9.
LFA-1 binding to ICAM-1 can enhance TCR-dependent proliferation of T cells, but it has been difficult to distinguish contributions from increased adhesion, and thus TCR occupancy, versus costimulatory signaling. Whether LFA-1 ligation results in generation of a unique costimulatory signal(s) distinct from those activated by the TCR has been unclear. Using purified ligands, it is shown that ICAM-1 and B7. 1 provide comparable costimulation for proliferation of CD8+ T cells, and that both ligands up-regulate the activities of phosphatidylinositol 3-kinase, sphingomyelinase, and c-Jun NH2-terminal kinase (JNK). These pathways are distinct from those activated by the TCR, and have previously been implicated in up-regulating IL-2 production in response to CD28-B7 interaction. Thus, under conditions in which ICAM-1 provides costimulation of proliferation, LFA-1 ligation activates some of the same signaling pathways as does CD28 ligation. LFA-1 and CD28 do not act identically, however, as indicated by differential sensitivity to inhibitors of phosphatidylinositol 3-kinase; LFA-1-dependent costimulation of proliferation is inhibited, while CD28-dependent costimulation is not. Given the broad distribution of class I and ICAMs on many cell types, the ability of LFA-1 to provide costimulatory signals has implications for where and how CD8+CTL may become activated in response to an antigenic challenge.  相似文献   

10.
CD4(+)CD8(+) double-positive (DP) thymocytes express a lower level of surface TCR than do mature T cells or single-positive (SP) thymocytes. Regulation of the TCR on DP thymocytes appears to result from intrathymic signaling, as in vitro culture of these cells results in spontaneous TCR up-regulation. In this study, we examined cell spreading and cytoskeletal polarization responses that have been shown to occur in response to TCR engagement in mature T cells. Using DP thymocytes stimulated on lipid bilayers or nontransgenic thymocytes added to anti-CD3-coated surfaces, we found that cell spreading and polarization of the microtubule organizing center and the actin cytoskeleton were inefficient in freshly isolated DP thymocytes, but were dramatically enhanced after overnight culture. SP (CD4(+)) thymocytes showed efficient responses to TCR engagement, suggesting that releasing DP thymocytes from the thymic environment mimics some aspects of positive selection. The poor translation of a TCR signal to cytoskeletal responses could limit the ability of DP thymocytes to form stable contacts with APCs and may thereby regulate thymocyte selection during T cell development.  相似文献   

11.
Developing T cells undergo distinct selection processes that determine the TCR repertoire. Positive selection involves the differentiation of immature thymocytes capable of recognizing antigens complexed with self-MHC molecules to mature T cells. Besides the central role of TCR engagement by MHC in triggering selection; the interaction of CD8 and CD4 with MHC class I and class II, respectively; is thought to be important in regulating the selection process. To study potential mechanisms involved in positive selection of CD8+ cells, we have analyzed mice expressing a unique transgenic TCR. The transgenic receptor recognizes the HY male Ag in the context of the MHC class I molecule, H2-Db. We describe that CD8 and the TCR are selectively associated in thymocytes of mice expressing the restricting MHC, but not in thymocytes of mice expressing a nonrestricting MHC. pp56lck and pp59fyn, the tyrosine kinases associated with CD8 and TCR, respectively, were found to be present in this complex in an activated form. No comparable TCR-CD4 complex formation was found in thymuses undergoing positive selection to CD8+ cells. The formation of a multimolecular complex between CD8 and TCR, in which pp56lck and pp59fyn are activated, may initiate specific signaling programs involved in the maturation of CD8+ cells.  相似文献   

12.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

13.
T cell receptor signaling in the thymus can result in positive selection, and hence progressive maturation to the CD4(+)8(-) or CD4(-)8(+) stage, or induction of apoptosis by negative selection. Although it is poorly understood how TCR ligation at the CD4(+)8(+) stage can lead to such different cell fates, it is thought that the strength of signal may play a role in determining the outcome of TCR signaling. In this study, we have characterized the formation of an active signaling complex in thymocytes undergoing positive selection as a result of interaction with thymic epithelial cells. Although this signaling complex involves redistribution of cell surface and intracellular molecules, reminiscent of that observed in T cell activation, accumulation of GM1-containing lipid rafts was not observed. However, enforced expression of the costimulatory molecule CD80 on thymic epithelium induced GM1 polarization in thymocytes, and was accompanied by reduced positive selection and increased apoptosis. We suggest that the presence or absence of CD80 costimulation influences the outcome of TCR signaling in CD4(+)8(+) thymocytes through differential lipid raft recruitment, thus determining overall signal strength and influencing developmental cell fate.  相似文献   

14.
15.
The maturation of CD4+8- and CD4-8+ thymocytes from CD4+8+ thymocytes is dependent on the mandatory interaction of their alpha beta TCR with selecting ligands expressed on thymic epithelial cells (TE). This is referred to as positive selection. The deletion of CD4+8+ thymocytes that express autospecific TCR (negative selection) is mediated primarily by bone marrow-derived cells. Previous studies have shown that TE is relatively ineffective in mediating the deletion of CD4+8- thymocytes expressing autospecific TCR but TE can render them anergic, i.e., nonresponsive, to the self Ag. The mechanism by which anergy is induced in these cells is unknown. In this study, we used thymocytes expressing a transgenic TCR specific for the male Ag presented by H-2Db class I MHC molecules to examine how expression of the deleting ligand by TE affects thymocyte development and phenotype. The development of female TCR-transgenic thymocytes was examined in irradiated male hosts or in female hosts that had received male fetal thymic epithelial implants. It was observed that the development of transgenic-TCR+ thymocytes was affected in mice with male TE. CD4+8+ thymocytes with reduced CD8 expression and markedly enhanced transgenic TCR expression accumulated in mice with male TE. Development of CD4-8+ thymocytes was also affected in these mice in that fewer were present and they expressed an intermediate CD8 coreceptor level. These CD4-8+ thymocytes expressed a high level of the transgenic TCR, retained the ability to respond to anti-TCR antibodies, but were nonresponsive to male APC. However, the maturation of CD4+8- thymocytes, which are also derived from CD4+8+ precursor cells, was relatively unaffected. In an in vitro assay for assessing negative selection, male TE failed to delete CD4+8+ thymocytes expressing the transgenic TCR under conditions where they were efficiently deleted by male dendritic cells. Collectively these results support the conclusion that male TE was inefficient in mediating deletion. Furthermore, expression of the deleting ligand on thymic epithelium interferes with the maturation of functional male-specific T cells and results in the accumulation of CD4+8+ and CD4-8+ thymocytes expressing a lower level of the CD8 coreceptor but a high level of the transgenic TCR.  相似文献   

16.
Current data indicate that CD5 functions as an inhibitor of TCR signal transduction. Consistent with this role, thymocyte selection in TCR transgenic/CD5(-/-) mice is altered in a manner suggestive of enhanced TCR signaling. However, the impact of CD5 deletion on thymocyte selection varies depending on the transgenic TCR analyzed, ranging from a slight to a marked shift from positive toward negative selection. An explanation for the variable effect of CD5 on selection is suggested by the observation that CD5 surface expression is regulated by TCR signal intensity during development and CD5 surface levels on mature thymocytes and T cells parallel the avidity of the positively selecting TCR/MHC/ligand interaction. In this study, we generated mice that overexpress CD5 during thymocyte development (CD5-tg), and then examined the effect of CD5 overexpression or CD5 deletion (CD5(-/-)) on selection of thymocytes that express the same TCR transgenes. The results demonstrate that the effect on thymocyte selection of altering CD5 expression depends on the avidity of the selecting interaction and, consequently, the level of basal (endogenous) CD5 surface expression. Substitution of endogenous CD5 with a transgene encoding a truncated form of the protein failed to rescue the CD5(-/-) phenotype, demonstrating that the cytoplasmic domain of CD5 is required for its inhibitory function. Together, these results indicate that inducible regulation of CD5 surface expression during thymocyte selection functions to fine tune the TCR signaling response.  相似文献   

17.
Protein kinase C-theta (PKCtheta) is critical for TCR-initiated signaling in mature T cells, but initial reports found no requirement for PKCtheta in thymocyte development. Thymocytes and peripheral T cells utilize many of the same signaling components and, given the significant role of PKCtheta in peripheral T cells, it was surprising that it was not involved at all in TCR signaling in thymocytes. We decided to re-evaluate the role of PKCtheta in thymocyte development using the well-characterized class II-restricted n3.L2 TCR-transgenic TCR model. Analysis of n3.L2 PKCtheta(-/-) mice revealed a defect in thymocyte-positive selection, resulting in a 50% reduction in the generation of n3.L2 CD4 single-positive thymocytes and n3.L2 CD4 mature T cells. Competition between n3.L2 WT and n3.L2 PKCtheta(-/-) thymocytes in bone marrow chimeras revealed a more dramatic defect, with a >80% reduction in generation of n3.L2 CD4 single-positive thymocytes derived from PKCtheta(-/-) mice. Inefficient positive selection of n3.L2 PKCtheta(-/-) CD4 single-positive cells resulted from "weaker" signaling through the TCR and correlated with diminished ERK activation. The defect in positive selection was not complete in the PKCtheta(-/-) mice, most likely accounted for by compensation by other PKC isoforms not evident in peripheral cells. Similar decreased positive selection of both CD4 and CD8 single-positive thymocytes was also seen in nontransgenic PKCtheta(-/-) mice. These findings now place PKCtheta as a key signaling molecule in the positive selection of thymocytes as well as in the activation of mature T cells.  相似文献   

18.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号