首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. To date, biphasic-biphasic contact has been developed for idealized geometries and not been accessible for more general geometries. In this paper a finite element formulation is developed for contact of biphasic tissues. The augmented Lagrangian method is used to enforce the continuity of contact traction and fluid pressure across the contact interface, and the resulting method is implemented in the commercial software COMSOL Multiphysics. The accuracy of the implementation is verified using 2D axisymmetric problems, including indentation with a flat-ended indenter, indentation with spherical-ended indenter, and contact of glenohumeral cartilage layers. The biphasic finite element contact formulation and its implementation are shown to be robust and able to handle physiologically relevant problems.  相似文献   

2.
Modelling transversely isotropic materials in finite strain problems is a complex task in biomechanics, and is usually addressed by using finite element (FE) simulations. The standard method developed to account for the quasi-incompressible nature of soft tissues is to decompose the strain energy function (SEF) into volumetric and deviatoric parts. However, this decomposition is only valid for fully incompressible materials, and its use for slightly compressible materials yields an unphysical response during the simulation of hydrostatic tension/compression of a transversely isotropic material. This paper presents the FE implementation as subroutines of a new volumetric model solving this deficiency in two FE codes: Abaqus and FEBio. This model also has the specificity of restoring the compatibility with small strain theory. The stress and elasticity tensors are first derived for a general SEF. This is followed by a successful convergence check using a particular SEF and a suite of single-element tests showing that this new model does not only correct the hydrostatic deficiency but may also affect stresses during shear tests (Poynting effect) and lateral stretches during uniaxial tests (Poisson's effect). These FE subroutines have numerous applications including the modelling of tendons, ligaments, heart tissue, etc. The biomechanics community should be aware of specificities of the standard model, and the new model should be used when accurate FE results are desired in the case of compressible materials.  相似文献   

3.
4.
5.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

6.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

7.
Cranio-maxillofacial (CMF) surgery operations are associated with rearrangement of facial hard and soft tissues, leading to dramatic changes in facial geometry. Often, correction of the aesthetical patient's appearance is the primary objective of the surgical intervention. Due to the complexity of the facial anatomy and the biomechanical behaviour of soft tissues, the result of the surgical impact cannot always be predicted on the basis of surgeon's intuition and experience alone. Computational modelling of soft tissue outcome using individual tomographic data and consistent numerical simulation of soft tissue mechanics can provide valuable information for surgeons during the planning stage. In this article, we present a general framework for computer-assisted planning of CMF surgery interventions that is based on the reconstruction of patient's anatomy from 3D computer tomography images and finite element analysis of soft tissue deformations. Examples from our clinical case studies that deal with the solution of direct and inverse surgical problems (i.e. soft tissue prediction, inverse implant shape design) demonstrate that the developed approach provides a useful tool for accurate prediction and optimisation of aesthetic surgery outcome.  相似文献   

8.
Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.  相似文献   

9.
10.
Frictionless specimen/platen contact in unconfined compression tests has traditionally been assumed in determining material properties of soft tissues via an analytical solution. In the present study, the suitability of this assumption was examined using a finite element method. The effect of the specimen/platen friction on the mechanical characteristics of soft tissues in unconfined compression was analyzed based on the published experimental data of three different materials (pigskin, pig brain, and human calcaneal fat). The soft tissues were considered to be nonlinear and viscoelastic; the friction coefficient at the contact interface between the specimens and platens was assumed to vary from 0.0 to 0.5. Our numerical simulations show that the tissue specimens are, due to the specimen/platen friction, not compressed in a uniform stress/strain state, as has been traditionally assumed in analytical analysis. The stress of the specimens obtained with the specimen/platen friction can be greater than those with the frictionless specimen/platen contact by more than 50%, even in well-controlled test conditions.  相似文献   

11.
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B?=?11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20-40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08?±?0. 42 kPa (mean?±?std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58?±?0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material.  相似文献   

12.
The simple shear test may provide unique information regarding the material response of parallel-fibered soft tissues because it allows the elimination of the dominant fiber material response from the overall stresses. However, inhomogeneities in the strain field due to clamping and free edge effects have not been documented. The finite element method was used to study finite simple shear of simulated ligament material parallel to the fiber direction. The effects of aspect ratio, clamping prestrain, and bulk modulus were assessed using a transversely isotropic, hyperelastic material model. For certain geometries, there was a central area of uniform strain. An aspect ratio of 1:2 for the fiber to cross-fiber directions provided the largest region of uniform strain. The deformation was nearly isochoric for all bulk moduli indicating this test may be useful for isolating solid viscoelasticity from interstitial flow effects. Results suggest this test can be used to characterize the matrix properties for the type of materials examined in this study, and that planar measurements will suffice to characterize the strain. The test configuration may be useful for the study of matrix, fiber-matrix, and fiber-fiber material response in other types of parallel-fibered transversely isotropic soft tissues.  相似文献   

13.
Biomaterials     
Biomaterials--materials used for the elaboration of systems designed for human implantation or organ substitutes--can be classified as metals and alloys, ceramics and polymers. Their uses are largely diversified, for soft and hard tissues replacement. Interactions rise between biological environment and implants, the mechanisms of them not always known: inflammatory response, corrosion and degradation of materials leading to leaching of some constituents possibly toxic and alteration of their mechanical properties. Blood interfacing materials introduce some particular problems of hemocompatibility. The matching of implant to biological medium, in other words, its biocompatibility has to be a priori evaluated, but until now no in vitro or in vivo evaluation method is fully reliable.  相似文献   

14.
Mechanical factors such as stresses and strains play a major role in the growth and remodelling of soft biological tissues. The main constituents of tissue undergo different processes reacting to mechanical stimulus. Thereby, the characterisation of growth and remodelling requires an accurate estimation of the stresses and strains of their main components. Many soft tissues can be considered as composite materials and can be analysed using an appropriate rule of mixtures. Particularly, arterial tissue can be modelled as an isotropic soft matrix reinforced with preferentially oriented collagen fibres. An inverse approach to obtain the mechanical characterisation of each main component is proposed in this work. The procedure is based on a rule of mixtures raised in a finite deformation framework and generalised to include kinematics and compatibility equations for serial–parallel behaviour. This methodology allows obtaining the stress–strain relationship of the components fitting experimental data.  相似文献   

15.
16.
17.
A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed ‘up’ element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the ‘forward’ simulation and ‘inverse’ estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.  相似文献   

18.
Cartilaginous tissues, such as articular cartilage and the annulus fibrosus, exhibit orthotropic behavior with highly asymmetric tensile–compressive responses. Due to this complex behavior, it is difficult to develop accurate stress constitutive equations that are valid for finite deformations. Therefore, we have developed a bimodular theory for finite deformations of elastic materials that allows the mechanical properties of the tissue to differ in tension and compression. In this paper, we derive an orthotropic stress constitutive equation that is second-order in terms of the Biot strain tensor as an alternative to traditional exponential type equations. Several reduced forms of the bimodular second-order equation, with six to nine parameters, and a bimodular exponential equation, with seven parameters, were fit to an experimental dataset that captures the highly asymmetric and orthotropic mechanical response of cartilage. The results suggest that the bimodular second-order models may be appealing for some applications with cartilaginous tissues.  相似文献   

19.
A three-dimensional finite element program is described which attempts to simulate the nonlinear mechanical behavior of an aging human face with specific reference to progressive gravimetric soft tissue descent. A cross section of the facial structure is considered to consist of a multilayered composite of tissues with differing mechanical behavior. Relatively short time (elastic-viscoplastic) behavior is governed by equations previously developed which are consistent with mechanical tests. The long time response is controlled by the aging elastic components of the tissues. An aging function is introduced which, in a simplified manner, models the observed loss of stiffness of these aging elastic components due to the history of straining as well as other physiological and environmental influences. Calculations have been performed for 30 years of exposure to gravitational forces. The deformations and stress distributions in the layers of the soft tissues are described. Overall, the feasibility of using constitutive relations which reflect the highly nonlinear elastic-viscoplastic behavior of facial soft tissues in finite element based three-dimensional mechanical analyses of the human face is demonstrated. Further developments of the program are discussed in relation to possible clinical applications. Although the proposed aging function produces physically reasonable long-term response, experimental data are not yet available for more quantitative validation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号