首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formaldehyde-degrading bacterium strain, FD3, was isolated from contaminated soil and identified as Paracoccus sp. based on partial 16S rRNA gene sequence analysis. In batch culture, the bacterium metabolized 5,000 and 8,000 mg/L formaldehyde completely within 16 and 18 h, respectively, at 30°C (pH 7.0) with agitation at 150 rpm. The degradation kinetics was found to follow a first-order model at all initial formaldehyde concentrations with regression values greater than 0.99. Formaldehyde degradation rates increased from 532.37 to 2283.04 mg/L/h as the initial concentration of formaldehyde was increased from 1,000 to 8,000 mg/L. The growth of strain FD3 on formaldehyde as a sole carbon and energy source was well described by the Luong model with a maximal specific growth rate of 0.1754/h, a half-saturation constant of 309.02 mg/L, and a maximum substrate concentration of 3875.53 mg/L. Due to its high tolerance and degradation capacity to formaldehyde, Paracoccus sp., FD3 is considered an excellent candidate for use in degrading formaldehyde in wastewaters.  相似文献   

2.
Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.  相似文献   

3.
Phenol degradation by Candida tropicalis and its fusant, which is produced using protoplast fusion as a selective technique, is evaluated under batch and high concentration conditions. The respirometric data show that oxygen uptake activities of both yeast strains peak at pH 7.0 and 32 degrees C, but the fusant is more active than the control strain. Although the data show that both yeast strains are capable of sustaining discernible degradation in the presence of phenol inhibition, however, the C. tropicalis fusant is capable of attaining better phenol degradation than the control strain and it is less susceptible to phenol inhibition. Under the conditions tested, C. tropicalis is completely inhibited at phenol concentrations >/=3,300 mg/L, whereas for the C. tropicalis fusant complete inhibition is absent until phenol concentrations are >/=4, 000 mg/L. The observed cell yields of both yeast strains are virtually identical and remain fairly constant at approximately 0.5 mg MLVSS/mg C6H5OH (MLVSS: mixed liquor volatile suspended solids). Copyright 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 391-395, 1998.  相似文献   

4.
Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 microns in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE.  相似文献   

5.
Huang L  Gan L  Zhao Q  Logan BE  Lu H  Chen G 《Bioresource technology》2011,102(19):8762-8768
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided.  相似文献   

6.
Fe0/厌氧微生物联合体系降解硝基苯的研究   总被引:1,自引:0,他引:1  
利用Fe0/厌氧微生物联合体系降解硝基苯(NB), 结果显示, Fe0与厌氧微生物之间存在明显的协同效应, 硝基苯的降解效果随零价铁投加量的增加而提高;最佳pH值为5.0~6.0;添加少量共代谢初级基质(葡萄糖), 可以大幅度提高硝基苯的降解;较高浓度铁离子对硝基苯的降解表现出一定的抑制作用, 添加0.5 mg/L的Fe3+或Fe2+可以加快硝基苯的降解。硝基苯降解的主要产物为苯胺, 降解过程遵循一级动力学模型, 一级反应速率常数k值随硝基苯浓度的提高而降低。  相似文献   

7.
The inhibition of tetrachloroethene (PCE) degradation in anaerobic, ethanol-fed PCE-enrichment cultures by chlorofluorocarbon 113 (CFC113) was a function of the initial CFC113 concentration. Typically, aqueous CFC113 concentrations up to 1 mg/L slowed, but did not stop PCE-degradation, but cis-1,2-dichloroethene (cDCE) degradation was inhibited by 0.2 mg/L CFC113. In some cultures, however, PCE degradation was stopped by as little as 0.15 mg/L CFC113. CFC113 also slowed the consumption of hydrogen and the concurrent methane production. CFC113 slowly degraded in PCE-enrichment cultures to hydrochlorofluorocarbon 123a (HCFC123a). Chlorotrifluoroethene was also detected. Although relatively non-toxic, CFC113 may nevertheless pose remediation challenges when present at sites that also contain PCE.  相似文献   

8.
TCE degradation in a methanotrophic attached-film bioreactor   总被引:1,自引:0,他引:1  
Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L(sb)) were observed. Batch TCE degradation rates at 35 degrees C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q(max)) of 10.6 mg TCE/gVS . day and a half velocity coefficient (K(S)) of 2.8 mg TCE/L were predicted. Continuous-flow kinetics also followed the Michaelis-Menten model, but other parameters may be limiting, such as dissolved copper and dissolved methane-q(max) and K(S) were 2.9 mg TCE/gVS . day and 1.5 mg TCE/L, respectively, at low copper concentrations (0.003 to 0.006 mg Cu/L). The maximum rates decreased substantially with small increases in dissolved copper. Methane consumption during continuous-flow operation varied from 23 to 1200 g CH(4)/g TCE degraded. Increasing the influent dissolved methane concentration from 0.01 mg/L to 5.4 mg/L reduced the TCE degradation rate by nearly an order of magnitude at 21 degrees C. Exposure of biofilms to 1.4 mg/L tetrachloroethene (PCE) at 35 degrees C resulted in the loss of methane utilization ability. Tests with methanotrophs grown on granular activated carbon indicated that lower effluent TCE concentrations could be obtained. The low efficiencies of TCE removal and low degradation rates obtained at 35 degrees C suggest that additional improvements will be necessary to make methanotrophic TCE treatment attractive. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
The inhibition of tetrachloroethene (PCE) degradation in anaerobic, ethanol-fed PCE-enrichment cultures by chlorofluorocarbon 113 (CFC113) was a function of the initial CFC113 concentration. Typically, aqueous CFC113 concentrations up to 1 mg/L slowed, but did not stop PCE-degradation, but cis-1,2-dichloroethene (cDCE) degradation was inhibited by 0.2 mg/L CFC113. In some cultures, however, PCE degradation was stopped by as little as 0.15 mg/L CFC113. CFC113 also slowed the consumption of hydrogen and the concurrent methane production. CFC113 slowly degraded in PCE-enrichment cultures to hydrochlorofluorocarbon 123a (HCFC123a). Chlorotrifluoroethene was also detected. Although relatively non-toxic, CFC113 may nevertheless pose remediation challenges when present at sites that also contain PCE.  相似文献   

10.
高效降解甲醛菌株的分离鉴定及其特性   总被引:4,自引:0,他引:4  
谢文娟  王洁  孙珮石  邹平 《微生物学通报》2011,38(11):1626-1631
首先对新分离的、能高效降解甲醛的两菌株A1和A2在形态学特征、生理生化特性及16S rDNA序列分析等方面进行了系统研究; 随后通过测定在液体培养过程中甲醛浓度的变化, 确定新分离菌株A1、A2降解溶液中甲醛的性能; 最后利用菌株A1、A2分别进行生物填料塔的挂膜实验, 确定其对甲醛气体的净化性能。结果表明: 菌株A1属于假单胞菌属(Pseudomonas), 菌株A2为鞘氨醇单胞菌属(Sphingomonas); 当甲醛初始浓度<1 200 mg/L时,菌株A1、A2都能完全降解溶液中的甲醛, 当甲醛浓度增高至1 600 mg/L时, 菌株A1在48 h后的甲醛降解率为50%, 菌株A2在104 h后的甲醛降解率为74.3%; 菌株A1、A2对甲醛气体的净化效率均能达到99%以上, 菌株A1的甲醛生化去除量能达到26.4 mg/(L?h), 菌株A2的甲醛生化去除量可达20.6 mg/(L?h)。  相似文献   

11.
Influence of phenol on cultures of acetate-fed aerobic granular sludge   总被引:6,自引:0,他引:6  
AIMS: This paper attempts to investigate the inhibition of phenol on the acetate utilization in acetate-fed aerobic granular sludge culture. METHODS AND RESULTS: Acetate-fed aerobic granules with a mean diameter of 1.0 mm were predeveloped in a column sequencing aerobic sludge blanket reactor. The present study looked into the utilization kinetics of acetate by acetate-fed aerobic granules in the presence of different phenol concentrations ranging from 0 mg l(-1) to 50 mg l(-1). For this purpose, batch experiments were conducted at 25 degrees C, while the initial biomass and acetate concentrations were in a range of 109-186 mg mixed liquor suspended solids (MLSS) l(-1) and 185-300 mg acetate-chemical oxygen demand (COD) l(-1). Results showed that the utilization of acetate in the presence of phenol was subject to a zero-order reaction kinetics. The relative phenol concentration in terms of the ratio of initial phenol concentration (C(p)) to initial biomass concentration (X(0)) was used to describe the real inhibitory strength of phenol imposed on acetate-fed aerobic granules. When the C(p)/X(0) ratio increased from 0 to 0.19 mg phenol mg(-1) MLSS, the zero-order reaction rate constant of acetate dropped from 1.15 mg l(-1) min(-1) to 0.38 mg l(-1) min(-1), and a similar trend was also observed in specific oxygen utilization rate. As compared to the control test without addition of phenol, the acetate-COD removal efficiency was reduced by nearly 50% at a C(p)/X(0) value of 0.19 mg phenol mg(-1) MLSS. It was found that biodegradation of phenol was negligible in acetate-fed aerobic granular sludge batch culture. CONCLUSIONS: It appears that phenol can seriously repress the utilization of acetate in the acetate-fed aerobic granular sludge batch cultures. A simple zero-order reaction model could adequately describe the utilization of acetate by acetate-fed aerobic granules in the presence of phenol. SIGNIFICANCE AND IMPACT OF THE STUDY: It is expected that this study would lead to a better understanding of the behaviour of acetate-fed aerobic granules in the presence of inhibitory organic compounds.  相似文献   

12.
The two major types of airlift contactors, concentric-tube and external-loop, were investigated for their gas holdup (riser and downcomer) and overall mass transfer characteristics. Results obtained in batch charges of tap water and 0.15 kmol/m(3) NaCl solution are reported for external-loop airlift contactors having downcomer-to-riser cross-sectional area ratios, A(d)/A(r), ranging from 0.11 相似文献   

13.
Whole cells and cell-free preparations of the methylotrophic bacteria, Pseudomonas sp. AM 1 and Achromobacter parvulus, can oxidize formate at tis concentration in the reaction medium up to 1 M. The respiration of whole cells is registered at a concentration of formate greater than 10(-2) M, while that of cell-free extracts at a formate concentration greater than 5 X 10(-5) M. This seems to be due to the presence of a permeability barrier in cells for formate. The oxidation of reduced TMPD and exogenous cytochrome c by the membrane preparations of the two bacteria is inhibited by formate and cyanide; Ki50% = 2.5 X 10(-2) and 10(-6) M, respectively. The oxidation of NADH by the membrane preparations of the bacteria is not inhibited by 1 M formate and 5 X 10(-4) M cyanide but is inhibited by formaldehyde with Ki50% = 3 X 10(-2) M. Formaldehyde has no effect on the oxidation of reduced TMPD and cytochrome c at concentrations greater than 2 X 10(-1) M. These data indicate that respiration of the studied methylotrophic bacteria in the presence of high formate concentrations should be attributed in the presence of a branched electron transport chain in them; one branch of the chain is resistant to formate and cyanide, but is sensitive to formaldehyde.  相似文献   

14.
Batch tests of benzene degradation were performed in liquid phase at 30 degrees C, pH 6.8 +/- 0.2, and 200 rpm in two 3-L stirred tank bioreactors, using the benzene-degrading bacterium Pseudomonas sp. NCIMB 9688. A relatively high starting biomass level (220-270 mg(X)/L) and starting benzene concentration ranging from 20 to 200 mg(S)/L were selected as conditions to investigate possible inhibition phenomena. Volumetric as well as specific rates of biomass formation and substrate consumption were calculated from experimental data of both growth and benzene degradation and used to propose and check a new overall kinetic model for cell growth simultaneously accounting for both product and substrate inhibitions. The results of the present study evidenced the occurrence of a competitive-type product inhibition due to 2-hydroxymuconic semialdehyde (K(iP)' = 0.902 mg(S)/L), which was stronger than the uncompetitive-type inhibition exerted by substrate (K(iS) = 7.69 mg(S)/L).  相似文献   

15.
The combined anaerobic-aerobic conditions in air-cathode single-chamber MFCs were used to completely mineralize pentachlorophenol (PCP; 5 mg/L), in the presence of acetate or glucose. Degradation rates of 0.140 ± 0.011 mg/L-h (acetate) and 0.117 ± 0.009 mg/L-h (glucose) were obtained with maximum power densities of 7.7 ± 1.1 W/m(3) (264 ± 39 W/m(2), acetate) and 5.1 ± 0.1 W/m(3) (175 ± 5 W/m(2), glucose). At a higher PCP concentration of 15 mg/L, PCP degradation rates increased to 0.171 ± 0.01 mg/L-h (acetate) and 0.159 ± 0.011 mg/L-h (glucose). However, power was inversely proportional to initial PCP concentration, with decreases of 0.255 W/mg PCP (acetate) and 0.184 W/mg PCP (glucose). High pH (9.0, acetate; 8.0, glucose) was beneficial to exoelectrogenic activities and power generation, whereas an acidic pH = 5.0 decreased power but increased PCP degradation rates (0.195 ± 0.002 mg/L-h, acetate; 0.173 ± 0.005 mg/L-h, glucose). Increasing temperature from 22 to 35°C enhanced power production by 37% (glucose) to 70% (acetate), and PCP degradation rates (0.188 ± 0.01 mg/L-h, acetate; 0.172 ± 0.009 mg/L-h, glucose). Dominant exoelectrogens of Pseudomonas (acetate) and Klebsiella (glucose) were identified in the biofilms. These results demonstrate that PCP degradation using air-cathode single-chamber MFCs may be a promising process for remediation of water contaminated with PCP as well as for power generation.  相似文献   

16.
The biodegradability of phenol and six other phenolic compounds (o-, m-, and p-cresol, 2-, 3-, and 4-ethylphenol) was examined in batch methanogenic cultures. The effect of concentration of these alkyl phenols on the anaerobic biodegradation of phenol was also evaluated. The inoculum used in this study was cultivated in a continuous flow laboratory fermenter with phenol as the primary substrate. Phenol, at initial concentrations as high to 1400 mg/L was completely degraded to methane and carbondioxide after 350 hours incubation. Complete degradation of m- and p-cresol was also observed while the ethylphenols and o-cresol were not significantly degraded.At initial concentrations exceeding 600 mg/L, phenol inhibited the phenol-degrading microorganisms but not the methanogens. At about 600 mg/L, cresols reduced the rate of phenol degradation to 50% of that observed in a control culture containing only 200 mg/L phenol. Ethylphenols were more inhibitory than cresols. Phenol degrading microorganisms were more susceptible to inhibition by cresols and ethylphenols than were the methanogens. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

17.
Summary Influence of formaldehyde on growth and secondary metabolite production inin vitro grown tissues of pyrethrum, capsicum and carrot were studied. Formaldehyde concentration above 0.025% completely inhibited the growth of addedBacillus andAspergillus in the culture medium. Formaldehyde up to 0.025% level caused slight inhibition in the growth of pyrethrum callus. Callus subjected to 0.05, 0.1 and 0.2% formaldehyde enhanced the level of pyrethrin production in pyrethrum callus, whereas production of phenolics was lower in all the treatments. Growth of carrot callus and anthocyanin production was not inhibited up to a formaldehyde concentration of 0.04%. Similarly, the production of capsaicin in immobilised cell cultures ofCapsicum frutescens was not inhibited up to 0.04% level of formaldeyde. The results demonstrate the usefulness of formaldehyde to control contamination in plant tissue culture.  相似文献   

18.
Summary DNA is more extensively degraded after it is damaged in recA mutants of E. coli than in wild type cells. All data presented here are consistent with the recA gene product, protein X, being an inhibitor of nalidixic acid induced degradation of the bulk DNA (but not of newly replicated DNA). Production of protein X also is correlated with appearance of various S.O.S. repair functions. Evidence was obtained by comparing the rates of protein X synthesis and solubilization of uniformly-labeled DNA in intact cells, incubated in the presence of nalidixic acid. A set of mutants at the lexA locus produced protein X at different rates and degraded their DNA at rates which were inversely correlated to their rates of protein X production. A low concentration of rifampicin quite specifically inhibited protein X production by wild type E. coli, and allowed more rapid DNA degradation. After the DNA was damaged by the incubation of cells in the presence of nalidixic acid, cells preloaded with protein X degraded their DNA more slowly. We propose that protein X could protect DNA against degradation by binding to singlestranded regions, thereby inhibiting nuclease action.  相似文献   

19.
Stem segments were excised from plants of Wisconsin 38 tobacco (Nicotiana tabacum L.) in three regions differing in their distance below the inflorescence. They were cultured in vitro in 8- or 16-hr days. After 8 weeks, floral and vegetative buds were counted, and extent of floral development was assessed. Kinetin at 10(-5)m inhibited formation and development of floral buds regardless of indoleacetic acid concentration. Supplied at this concentration with adequate auxin, kinetin stimulated vegetative bud formation and may have caused floral bud abortion. Indoleacetic acid (>/= 10(-6)m) inhibited vegetative and floral bud formation when supplied with low kinetin concentration (/= 10(-6)m), it inhibited floral bud formation and stimulated vegetative bud formation. More floral buds were formed in 16-hr days than in 8-hr days. Few formed on explants other than those derived from the region nearest the inflorescence regardless of other treatment.  相似文献   

20.
The degradation of phenol (100-2800 mg/L) by cells Pseudomonas putida CCRC14365 in an extractive hollow-fiber membrane bioreactor (HFMBR) was studied, in which the polypropylene fibers were prewetted with ethanol. The effects of flow velocity, the concentrations of phenol, and the added dispersive agent tetrasodium pyrophosphate on phenol degradation and cell growth were examined. It was shown that about 10% of phenol was sorbed on the fibers at the beginning of the degradation process. The cells P. putida fully degraded 2000 mg/L of phenol within 73 h when the cells were immobilized and separated by the fibers. Even at a level of 2800 mg/L, phenol could be degraded more than 90% after 95-h operation. At low phenol levels (< 400 mg/L) where substrate inhibition was not severe, it was more advantageous to treat the solution in a suspended system. At higher phenol levels (> 1000 mg/L), however, such HFMBR-immobilized cells could degrade phenol to a tolerable concentration with weak substrate-inhibition effect, and the degradation that followed could be completed by suspended cultures due to their larger degradation rate. The process development in an HFMBR system was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号