首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
低氧激活巨噬细胞内NF-κB 信号转导通路的机制   总被引:3,自引:0,他引:3  
Zhang CP  Xie YZ  Chen P  Hong X  Xiao ZH  Ma Y  Lu YD 《生理学报》2004,56(4):515-520
  相似文献   

3.
High-mobility group box 1 (HMGB1) is a nuclear factor released extracellularly as a proinflammatory cytokine. We measured the HMGB1 concentration in the sera of mice with chemically induced colitis (DSS; dextran sulfate sodium salt) and found a marked increase. Inhibition of HMGB1 by neutralizing anti-HMGB1 antibody resulted in reduced inflammation in DSS-treated colons. In macrophages, HMGB1 induces several proinflammatory cytokines, such as IL-6, which are regulated by NF-kappaB activation. Two putative sources of HMGB1 were explored: in one, bacterial factors induce HMGB1 secretion from macrophages and in the other, necrotic epithelial cells directly release HMGB1. LPS induced a small amount of HMGB1 in macrophages, but macrophages incubated with supernatant prepared from necrotic cells and containing large amounts of HMGB1 activated NF-kappaB and induced IL-6. Using the colitis-associated cancer model, we demonstrated that neutralizing anti-HMGB1 antibody decreases tumor incidence and size. These observations suggest that HMGB1 is a potentially useful target for IBD treatment and the prevention of colitis-associated cancer.  相似文献   

4.
Andela VB  Altuwaijri S  Wood J  Rosier RN 《FEBS letters》2005,579(7):1765-1769
We demonstrate expression and coordinate induction of PPARgamma and lipogenic enzymes (HMG-CoA synthase, HMG-CoA reductase and fatty acid synthase) in a murine lung alveolar carcinoma cell line (Line 1) treated with the PPARgamma agonist troglitazone (TRO) [0-100 microM]. We postulate that TRO induces a shift in cellular energy metabolism towards fatty acid oxidation (beta-oxidative respiration). Accordingly, co-treatment with TRO [30 microM] and increasing concentrations of trimetazidine (TMZ) [0.1-3 mM], an inhibitor of beta-oxidation, results in a dose dependent decrease cellular ATP levels and a dose dependent induction of apoptosis. These findings, suggest that inhibition of beta-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARgamma agonists.  相似文献   

5.
Cell adhesion molecules expressed on endothelial cells in inflamed skin appear to be controlled by the actions of cytokines and reactive oxygen species. However, molecular mechanisms of the expression of adhesion molecules during skin inflammation are currently not well understood. To evaluate the role of antioxidants and nitric oxide in modulating inflammatory processes in the skin, we examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1 mM) and spermine NONOate (Sper-NO, 1 mM) on adhesion molecule expression and nuclear factor kappa B (NF-kappaB) activation induced by TNF-alpha (10 ng/ml) in cultured human dermal microvascular endothelial cells (HDMEC). Treatment of cells with TNF-alpha for 4 h significantly induced the surface expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1). Treatment with TNF-alpha for 8 h significantly induced the surface expression of E-selectin, ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1). The up-regulation of these adhesion molecules was suppressed significantly by pretreatment with PDTC or Sper-NO for 1 h. The mRNA expression of E-selectin, ICAM-1 and VCAM-1, and activation of NF-kappaB induced by TNF-alpha for 2 h were significantly decreased by the above two pretreatments. N-acetylcysteine (10 mM) and S-nitroso-N-acetylpenicillamine (1 mM) had no significant inhibitory effects on the cell surface and mRNA expression of these adhesion molecules stimulated by TNF-alpha. These findings indicate that both cell surface and mRNA expression of adhesion molecules in HDMEC induced by TNF-alpha are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly in part through blocking the activation of NF-kappaB. These results suggest a potential therapeutic approach using antioxidant agents or nitric oxide pathway modulators in the treatment of inflammatory skin diseases.  相似文献   

6.
Serine protease inhibitor SerpinE2 is known as a cytokine-inducible gene. Here, we investigated whether tumor necrosis factor alpha-(TNF-alpha)-induced expression of SerpinE2 is mediated by the nuclear factor-kappaB (NF-kappaB) p65 subunit. Both steady state and TNF-alpha-induced expression of SerpinE2 mRNA were abrogated in p65-/- murine embryonic fibroblasts (MEFs). Reconstitution with wild-type p65 rescued SerpinE2 mRNA expression in an IkappaB kinase beta-dependent manner. Electrophoresis mobility shift assay and ChIP assay demonstrated that p65 bound to the kappaB-like DNA sequence located at approximately -9 kbp in the SerpinE2 promoter. In addition, TNF-alpha stimulated luciferase gene expression driven by the kappaB-like element in the reconstituted MEFs, but not in p65-/- MEFs. These results indicated that activation of NF-kappaB p65 plays an important role in TNF-alpha-induced expression of SerpinE2.  相似文献   

7.
Chen H  Wu Y  Zhang Y  Jin L  Luo L  Xue B  Lu C  Zhang X  Yin Z 《FEBS letters》2006,580(13):3145-3152
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.  相似文献   

8.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   

9.
10.
Tumor necrosis factor alpha (TNF-alpha) is one of the best-described cell death promoters. In murine L929 fibroblasts, dexamethasone inhibits TNF-alpha-induced cytotoxicity. Since phosphatidyl inositol 3 kinase (PI3K) and nuclear factor kappa B (NF-kappaB) proteins regulate several survival pathways, we evaluated their participation in dexamethasone protection against TNF-alpha cell death. We interfered with these pathways by overexpressing a negative dominant mutant of PI3K or a non-degradable mutant of inhibitor of NF-kappaB alpha (IkappaBalpha) (the cytoplasmic inhibitor of NF-kappaB) in L929 cells. The mutant IkappaB, but not the mutant PI3K, abrogated dexamethasone-mediated protection. The loss of dexamethasone protection was associated with a diminished accumulation in XIAP and c-IAP proteins.  相似文献   

11.
Park SG  Lee T  Kang HY  Park K  Cho KH  Jung G 《FEBS letters》2006,580(3):822-830
NF-kappaB activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling during tumor necrosis factor (TNF)-alpha stimulation. TNF-alpha induces apoptosis sensitive to the hepatitis B virus (HBV) infected cells, despite sustained NF-kappaB activation. Our results indicate that the HBV infection induces sustained NF-kappaB activation, in a manner similar to the TNF-alpha stimulation. However, these effects are not merely combined. Computational simulations show that the level of form of the IKK complex activated by phosphorylation (IKK-p) affects the dynamic pattern of NF-kappaB activation during TNF-alpha stimulation in the following ways: (i) the initial level of IKK-p determines the incremental change in IKK-p at the same level of TNF-alpha stimulation, (ii) the incremental change in IKK-p determines the amplitudes of active NF-kappaB oscillation, and (iii) the steady state level of IKK-p after the incremental change determines the period of active NF-kappaB oscillation. Based on experiments, we observed that the initial level of IKK-p was upregulated and the active NF-kappaB oscillation showed smaller amplitudes for a shorter period in HepG2.2.15 cells (HBV-producing cells) during TNF-alpha stimulation, as was indicated by the computational simulations. Furthermore, we found that during TNF-alpha stimulation, NF-kappaB-regulated anti-apoptotic genes were upregulated in HepG2 cells but were downregulated in HepG2.2.15 cells. Based on the previously mentioned results, we can conclude that the IKK-p-level changes induced by HBV infection modulate the dynamic pattern of active NF-kappaB and thereby could affect NF-kappaB-regulated anti-apoptotic gene expressions. Finally, we postulate that the sensitive apoptotic response of HBV-infected cells to TNF-alpha stimulation is governed by the dynamic patterns of active NF-kappaB based on IKK-p level changes.  相似文献   

12.
为了解生殖支原体(Mg)潜在的致病性及其脂质相关膜蛋白(LAMPs)诱导人单核细胞(THP-1)凋亡及表达前炎症细胞因子(CKs)的分子机制,用Mg提取的LAMPs刺激THP-1细胞,以ELISA法和RT-PCR方法分析CKs产生和其mRNA的表达。不同试实验组的细胞经AnnexinV联合PI染色后通过流式细胞仪检测细胞凋亡。采用EMSA方法检测LAMPs处理的THP-1细胞中核转录因子kappaB(NF-κB)的激活,并分析NF-κB抑制剂二硫代氨基甲酸吡咯烷(pyrrolidine dithiocoarbamate,PDTC)对LAMPs处理的THP-1细胞产生CKs的量和其mRNA表达及细胞凋亡的影响。LAMPs能以时间和剂量依赖方式刺激THP-1细胞产生TNF-α、IL-1β和IL-6,且能激活NF-κB诱导THP-1细胞表达CKs的mRNA及发生凋亡,PDTC能显著抑制CKs的mRNA表达水平和细胞凋亡。由于LAMPs能激活NF-κB诱导THP-1细胞表达CKs及产生细胞凋亡,因而可能是一个重要的致病因素。  相似文献   

13.
14.
15.
Lim W  Jung J  Surh Y  Inoue H  Lee Y 《Life sciences》2007,80(22):2085-2092
The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappaB activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappaB, we made point mutations in the NF-kappaB binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappaB binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappaB, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappaB. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells.  相似文献   

16.
17.
18.
19.
Apolipoprotein B mRNA-editing enzyme catalytic subunit 2 (APOBEC2) is a member of the nucleic-acid-editing enzymes. However, the physiological function of APOBEC2 remains unclear. We demonstrate that APOBEC2 expression is strongly enhanced in response to both tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta. Inhibition of NF-kappaB activation invariably blocks TNF-alpha-induced APOBEC2 expression. The promoter region of APOBEC2 contains functional NF-kappaB response elements in the 5' untranslated region of the gene at -625/-616. These results show that APOBEC2 expression is regulated by pro-inflammatory cytokines via NF-kappaB activation and suggest a possible role of APOBEC2 in the pathophysiology of hepatic inflammation.  相似文献   

20.
Adiponectin inhibits Toll-like receptor family-induced signaling   总被引:3,自引:0,他引:3  
Recent studies have shown that adiponectin, an adipocyte-derived cytokine, acts as a potent inhibitor of inflammatory responses. It has been also demonstrated that bacterial and viral signalings in host cells are triggered via Toll-like receptor (TLR) molecules. Therefore, in the present study, we investigated whether globular adiponectin (gAd) would be able to inhibit TLR-mediated nuclear factor-kappaB (NF-kappaB) signaling in mouse macrophages (RAW264). gAd predominantly bound to the AdipoR1 receptor and suppressed TLR-mediated NF-kappaB signaling. gAd-mediated inhibition of TLR-mediated IkappaB phosphorylation and NF-kappaB activation was eliminated by the pretreatment of cycloheximide. Also their inhibitions of gAd were blocked by preincubation of the cells with an antibody against AdipoR1, but not with an antibody against AdipoR2. Taken together, these findings indicate that adiponectin negatively regulates macrophage-like cell response to TLR ligands via an unknown endogenous product(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号