首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The citrate synthase activity of Acetobacter xylinum cells grown on glucose was the same as of cells grown on intermediates of the tricarboxylic acid cycle. The activity of citrate synthase in extracts is compatible with the overall rate of acetate oxidation in vivo. The enzyme was purified 47-fold from sonic extracts and its molecular weight was determined to be 280000 by gel filtration. It has an optimum activity at pH 8.4. Reaction rates with the purified enzyme were hyperbolic functions of both acetyl-CoA and oxaloacetate. The Km for acetyl-CoA is 18 mum and that for oxaloacetate 8.7 mum. The enzyme is inhibited by ATP according to classical kinetic patterns. This inhibition is competitive with respect to acetyl-CoA (Ki = 0.9 mM) and non-competitive with respect to oxaloacetate. It is not affected by changes in pH and ionic strength and is not relieved by an excess of Mg2+ ions. Unlike other Gram-negative bacteria, the A. xylinum enzyme is not inhibited by NADH, but is inhibited by high concentrations of NADPH. The activity of the enzyme varies with energy charge in a manner consistent with its role in energy metabolism. It is suggested that the flux through the tricarboxylic acid cycle in A. xylinum is regulated by modulation of citrate synthase activity in response to the energy state of the cells.  相似文献   

2.
The kinetic properties of citrate synthase from rat liver mitochondria   总被引:19,自引:6,他引:13       下载免费PDF全文
1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16mum for acetyl-CoA and 2mum for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2.5. 5. The pH optimum of the enzyme is 8.7, and is not significantly affected by ATP. 6. Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6.3s, equivalent to molecular weight 95000.  相似文献   

3.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

4.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

5.
Spermine activated citrate synthase from porcine heart by decreasing the Km value for the substrate oxaloacetate without affecting the maximal velocity. Spermine markedly increased the maximal velocity of the saturation function with respect to acetyl-CoA as the substrate under conditions of intracellular concentrations of oxaloacetate, but the enzyme was not activated by spermine under conditions of higher concentrations of oxaloacetate. The concentration of spermine required for 50% activation of the enzyme was about 50 microM. Spermidine showed only a little activation, while putrescine caused no activation. Spermine, which contributes to an activation of Ca2(+)-sensitive dehydrogenases of the citric acid cycle by enhancing Ca2+ uptake into mitochondria, can activate citrate synthase directly, and is responsible for the stimulation of oxidative metabolism in mitochondria.  相似文献   

6.
ATP citrate lyase (ACL) catalyses the ATP-dependent reaction between citrate and CoA to form oxaloacetate and acetyl-CoA. Our molecular characterizations of the cDNAs and genes coding for the Arabidopsis ACL indicate that the plant enzyme is heteromeric, consisting of two dissimilar subunits. The A subunit is homologous to the N-terminal third of the animal ACL, and the B subunit is homologous to C-terminal two-thirds of the animal ACL. Using both ACL-A- and ACL-B-specific antibodies and activity assays we have shown that ACL is located in the cytosol, and is not detectable in the plastids, mitochondria or peroxisomes. During seed development, ACL-A and ACL-B mRNA accumulation is co-ordinated with the accumulation of the cytosolic homomeric acetyl-CoA carboxylase mRNA. Antisense Arabidopsis plants reduced in ATP citrate lyase activity show a complex phenotype, with miniaturized organs, small cell size, aberrant plastid morphology and reduced cuticular wax. Our results indicate that ACL generates the cytosolic pool of acetyl-CoA, which is the substrate required for the biosynthesis of a variety of phytochemicals, including cuticular waxes and flavonoids.  相似文献   

7.
ATP:citrate lyase (ACL) catalyzes the conversion of citrate to acetyl-coenzyme A (CoA) and oxaloacetate and is a key enzyme for lipid accumulation in mammals and oleaginous yeasts and fungi. To investigate whether heterologous ACL genes can be targeted and imported into the plastids of plants, a gene encoding a fusion protein of the rat liver ACL with the transit peptide for the small subunit of ribulose bisphosphate carboxylase was constructed and introduced into the genome of tobacco. This was sufficient to provide import of the heterologous protein into the plastids. In vitro assays of ACL in isolated plastids showed that the enzyme was active and synthesized acetyl-CoA. Overexpression of the rat ACL gene led to up to a 4-fold increase in the total ACL activity; this increased the amount of fatty acids by 16% but did not cause any major change in the fatty acid profile. Therefore, increasing the availability of acetyl-CoA as a substrate for acetyl-CoA carboxylase and subsequent reactions of fatty acid synthetase has a slightly beneficial effect on the overall rate of lipid synthesis in plants.  相似文献   

8.
Citrate(si)-synthase (citrate oxaloacetate-lyasem EC 4.1.3.7) was purified as an electrophoretically homogeneous protein from an ammonia-oxidizing chemoautotrophic bacterium, Nitrosomonas sp. TK794. The molecular mass of the native enzyme was estimated to be about 287 kDa by gel filtration, whereas SDS-PAGE produced one band with Mr values of 44.7 kDa, suggesting that the enzyme is a hexamer consisting of identical subunits. The isoelectric point of the enzyme was 5.0. The pH and temperature optima for citrate synthase (CS) activity was about 7.5–8.0 and 40°C, respectively. The citrate synthase was stable over a pH range of 6.0–8.5 and up to 40°C. The apparent Km values for oxaloacetate and acetyl-CoA were about 11 μM and 247 μM, respectively. The activity of the citrate synthase was not inhibited by ATP, NADH or 2-oxoglutarate at 5mM, and was activated by potassium chloride at 0.1–100 mM. The N-terminal amino acid sequence of the enzyme protein was PPQDVATLSPGENKKTIELPILG.  相似文献   

9.
The Gram-negative bacterium Rhizobium meliloti contains two distinct malic enzymes. We report the purification of the two isozymes to homogeneity, and their in vitro characterization. Both enzymes exhibit unusually high subunit molecular weights of about 82 kDa. The NAD(P)(+) specific malic enzyme [EC 1.1.1.39] exhibits positive co-operativity with respect to malate, but Michaelis-Menten type behavior with respect to the co-factors NAD(+) or NADP(+). The enzyme is subject to substrate inhibition, and shows allosteric regulation by acetyl-CoA, an effect that has so far only been described for some NADP(+) dependent malic enzymes. Its activity is positively regulated by succinate and fumarate. In contrast to the NAD(P)(+) specific malic enzyme, the NADP(+) dependent malic enzyme [EC 1.1.1.40] shows Michaelis-Menten type behavior with respect to malate and NADP(+). Apart from product inhibition, the enzyme is not subjected to any regulatory mechanism. Neither reductive carboxylation of pyruvate, nor decarboxylation of oxaloacetate, could be detected for either malic enzyme. Our characterization of the two R. meliloti malic enzymes therefore suggests a number of features uncharacteristic for malic enzymes described so far.  相似文献   

10.
ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes the synthesis of acetyl-CoA and oxaloacetate using citrate, CoA, and ATP as substrates and Mg2+ as a necessary cofactor. The ACL-dependent synthesis of acetyl-CoA is thought to be an essential step for the de novo synthesis of fatty acids and cholesterol. For this reason, inhibition of ACL has been pursued as a strategy to treat dyslipidemia and obesity. Traditionally, ACL enzyme activity is measured indirectly by coupling to enzymes such as malate dehydrogenase or chloramphenicol acetyl transferase. In this report, however, we describe a novel procedure to directly measure ACL enzyme activity. We first identified a convenient method to specifically detect [14C]acetyl-CoA without detecting [14C]citrate by MicroScint-O. Using this detection system, we devised a simple, direct, and homogeneous ACL assay in 384-well plate format that is suitable for high-throughput screening. The current assay consists of 1) incubation of ACL enzyme with [14C]citrate and other substrates/cofactors CoA, ATP, and Mg2+, 2) EDTA quench, 3) addition of MicroScint-O, the agent that specifically detects product [14C]acetyl-CoA, and 4) detection of signal by TopCount. This unique ACL assay may provide more efficient identification of new ACL inhibitors and allow detailed mechanistic characterization of ACL/inhibitor interactions.  相似文献   

11.
1. The contents of some intermediates of glycolysis, the citric acid cycle and adenine nucleotides have been measured in the freeze-clamped locust flight muscle at rest and after 10s and 3min flight. The contents of glucose 6-phosphate, pyruvate, alanine and especially fructose bisphosphate and triose phosphates increased markedly upon flight. The content of acetyl-CoA is decreased after 3min flight whereas that of acetylcarnitine is decreased markedly after 10s flight, but returns towards the resting value after 3min flight. The content of citrate is markedly decreased after both 10s and 3min flight, whereas that of isocitrate is changed very little after 10s and is increased by 50% after 3min. The content of oxaloacetate is very low in insect flight muscle and hence it was measured by a sensitive radiochemical assay. The content of oxaloacetate increased about 2-fold after 3min flight. A similar change was observed in the content of malate. The content of ATP decreased about 15%, whereas those of ADP and AMP increased about 2-fold after 3min flight. 2. Calculations based on O(2) uptake of the intact insect indicate that the rate of the citric acid cycle must be increased >100-fold during flight. Consequently, if citrate synthase catalyses a non-equilibrium reaction, the activity of the enzyme must increase >100-fold during flight. However, changes in the concentrations of possible regulators of citrate synthase, oxaloacetate, acetyl-CoA and citrate (which is an allosteric inhibitor), are not sufficient to account for this change in activity. It is concluded that there may be much larger changes in the free concentration of oxaloacetate than are indicated by the changes in the total content of this metabolite or that other unknown factors must play an additional role in the regulation of citrate synthase activity. 3. The increased content of oxaloacetate could be produced via pyruvate carboxylase, which may be stimulated during the early stages of flight by the increased concentration of pyruvate. 4. The decreases in the concentrations of citrate and alpha-oxoglutarate indicate that isocitrate dehydrogenase and oxoglutarate dehydrogenase may be stimulated by factors other than their pathway substrates during the early stages of flight. 5. Calculated mitochondrial and cytosolic NAD(+)/NADH ratios are both increased upon flight. The change in the mitochondrial ratio indicates the importance of the intramitochondrial ATP/ADP concentration ratio in the regulation of the rate of electron transfer in this muscle.  相似文献   

12.
The discovery of a cold-labile cytosolic acetyl-CoA hydrolase of high activity in rat liver by Prass et al. [(1980) J. Biol. Chem. 255, 5215-5223] has questioned the importance of mitochondrial acetyl-CoA hydrolase for the formation of free acetate [Grigat et al. (1979) Biochem. J. 177, 71-79] under physiological conditions. Therefore this problem has been reevaluated by comparing various properties of the two enzymes. Cold-labile cytosolic acetyl-CoA hydrolase bands with an apparent Mr of 68000 during SDS/polyacrylamide gel electrophoresis, while the native enzyme elutes in two peaks with apparent Mr of 136000 and 245000 during gel chromatography in the presence of 2 mM ATP. The mitochondrial enzyme elutes under the same conditions with an apparent Mr of 157000. Under conditions where the cold-labile enzyme binds strongly to DEAE-Bio-Gel and ATP-agarose, the mitochondrial enzyme remains unbound. The cold-labile enzyme can be activated 14-fold by ATP, half-maximal activation occurring already at 40 microM ATP. AdoPP[NH]P, AdoPP[CH2]P and GTP have a similar though weaker effect. ADP as well as GDP can completely inhibit the cold-labile enzyme with 50% inhibition occurring for both nucleotides at about 1.45 microM. The binding of ATP and ADP is competitive. Acetyl phosphate and pyrophosphate have no effect on the activity of the cold-labile enzyme. The mitochondrial acetyl-CoA hydrolase is not affected by these nucleotides. CoASH is a strong product inhibitor (approximately equal to 80% inhibition at 40 microM CoASH) of the cold-labile enzyme, but only a weak inhibitor of the mitochondrial enzyme. Under in vivo conditions the activity of the cold-labile cytosolic acetyl-CoA hydrolase can be no more than 7% of the activity calculated for mitochondrial acetyl-CoA hydrolase under the same conditions. Accordingly the mitochondrial enzyme seems to be mainly responsible for the formation of free acetate by the intact liver, especially in view of the fact that the substrate specificity of the mitochondrial enzyme is much higher (activity ratios acetyl-CoA/butyryl-CoA 4.99 and 1.16 for the mitochondrial and the cold-labile enzyme respectively). Alloxan diabetes neither increased the activity of the cold-labile enzyme nor that of the mitochondrial enzyme. No experimental support has been found yet for the hypothesis that the acetyl-CoA hydrolase activity of the cold-labile enzyme represents the side-activity of an acetyl-transferase.  相似文献   

13.
In Burkholderia glumae (formerly named Pseudomonas glumae), isolated as the causal agent of grain rot and seedling rot of rice, oxalate was produced from oxaloacetate in the presence of short-chain acyl-CoA such as acetyl-CoA and propionyl-CoA. Upon purification, the enzyme responsible was separated into two fractions (tentatively named fractions II and III), both of which were required for the acyl-CoA-dependent production of oxalate. In conjugation with the oxalate production from oxaloacetate catalyzed by fractions II and III, acetyl-CoA used as the acyl-CoA substrate was consumed and equivalent amounts of CoASH and acetoacetate were formed. The isotope incorporation pattern indicated that the two carbon atoms of oxalate are both derived from oxaloacetate, and among the four carbon atoms of acetoacetate two are from oxaloacetate and two from acetyl-CoA. When the reaction was carried out with fraction II alone, a decrease in acetyl-CoA and an equivalent level of net utilization of oxaloacetate were observed without appreciable formation of CoASH, acetoacetate or oxalate. It appears that in the oxalate production from oxaloacetate and acetyl-CoA, fraction II catalyzes condensation of the two substrates to form an intermediate which is split into oxalate and acetoacetate by fraction III being accompanied by the release of CoASH.  相似文献   

14.
1. A constant molecular weight of 57000 was obtained by gel filtration of highly purified acetyl-CoA synthetase over a 1000-fold range of enzyme concentrations. The amino acid analysis is reported. 2. With native enzyme at 20 degrees C the relatively rapid reaction of four thiol residues with p-hydroxymercuribenzoate caused an immediate inhibition reversible by either CoA or mercaptoethanol. Other substrates did not protect against this rapid inhibition. 3. The much slower reaction of the remaining four thiol residues was independent of the concentration of the mercurial, first-order with respect to enzyme, and had a large energy of activation (+136kJ/mol), suggesting that a conformation change in the protein was rate-limiting. This slow phase of the reaction was accompanied by an irreversible inactivation of the enzyme. 4. The effects of substrates on this irreversible inactivation at pH7.0 in 5 mm-MgCl(2) indicated strong binding of ATP and pyrophosphate by the enzyme (concentrations for half-maximal effects, K((1/2)), were <30mum and <10mum respectively) and weaker binding of acetyl-CoA (K((1/2)) about 1 mm), AMP (K((1/2)) about 2mm) and acetate. In the presence of acetate, MgCl(2) and p-hydroxymercuribenzoate, titration of the enzyme with ATP revealed at least two ATP binding sites/mol. 5. The experiments suggest that reaction of the thiol residues with mercurial causes loss of enzymic activity by altering the structure of the enzyme, rather than that the thiol residues play a direct role in the catalysis.  相似文献   

15.
Bovine mammary fatty acid synthetase was inhibited by approximately 50% by 40 microM methylmalonyl-CoA; this inhibition was competitive with respect to malonyl-CoA (apparent Ki = 11 microM). Similarly, 6.25 microM coenzyme A inhibited the synthetase by 35% and this inhibition was again competitive (apparent Ki = 1.7 microM). Apparent Km for malonyl-CoA was 29 microM. The short-chain dicarboxylic acids malonic, methylmalonic and ethylmalonic at high concentrations (160-320 microM) and ATP (5 mM) enhanced the synthetase activity by about 50% respectively; the activating effects of methylmalonic acid and ATP on the synthetase were additive. Methylmalonyl-CoA at 50 microM concentration inhibited the partially purified acetyl-CoA carboxylase uncompetitively by 10% and the propionyl-CoA carboxylase activity of the enzyme preparation competitively (apparent Ki = 21 microM) by 40%. Malonyl-CoA also inhibited the acetyl-CoA carboxylase activity competitively (apparent Ki = 7 microM) by 35% and the propionyl-CoA carboxylating activity of the preparation competitively (apparent Ki = 4 microM) by 82%. The possibility that methylmalonyl-CoA may be a causal factor in the aetiology of the low milk-fat syndrome in high yielding dairy cows is discussed.  相似文献   

16.
1. The reaction pathway for the carboxylation of pyruvate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K(+) and acetyl-CoA. 2. Free Mg(2+) binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgATP(2-) binds next, followed by HCO(3) (-) and then pyruvate. Oxaloacetate is released before the random release, at equilibrium, of P(i) and MgADP(-). 3. This reaction pathway is compared with the double displacement (Ping Pong) mechanisms that have previously been described for pyruvate carboxylases from other sources. The reaction pathway proposed for the pig liver enzyme is superior in that it shows no kinetic inconsistencies and satisfactorily explains the low rate of the ATP[unk][(32)P]P(i) equilibrium exchange reaction. 4. Values are presented for the stability constants of the magnesium complexes of ATP, ADP, acetyl-CoA, P(i), pyruvate and oxaloacetate.  相似文献   

17.
The kinetics of citrate synthase in situ in toluene-treated rat liver mitochondria were studied. The Vmax, Km, and kinetic pattern for oxaloacetate were the same as those for the pure rat liver citrate synthase. The Km, for acetyl-CoA for the in situ enzyme was increased compared to pure enzyme (8.5 to 77 μm), and the sensitivity of the in situ enzyme to inhibition by ATP, NADPH, or tricarballylate was decreased. The change seen with ATP was not due to problems of small molecule diffusion.  相似文献   

18.
Apparent conformational transitions induced in chicken liver pyruvate carboxylase by substrates, KHCO(3) and MgATP, and the allosteric effector, acetyl-CoA, were studied by using the fluorescent probe, 8-anilinonaphthalene-1-sulphonic acid and c.d. Fluorescence measurements were made with both conventional and stopped-flow spectrophotometers. Additions of acetyl-CoA and/or ATP to the enzyme-probe solutions quenched fluorescence of the probe by the following cumulative amounts regardless of the sequence of additions: acetyl-CoA, 10-13%; ATP, 21-24%; acetyl-CoA plus ATP, about 35%. Additions of KHCO(3) had no effect on the fluorescence. The rates of quenching by acetyl-CoA and MgATP (in the presence of acetyl-CoA) were too rapid to measure by stopped-flow kinetic methods, but kinetics of the MgATP effect (in the absence of acetyl-CoA) indicate three unimolecular transitions after the association step. The negligible effect of the probe on enzyme catalytic activity, a preservation of the near-u.v. c.d. effect of MgATP and acetyl-CoA in the presence of the probe and no observable unimolecular transitions after binding of the probe to the enzyme indicate that the probe had no deleterious effect on the enzyme. In contrast with results with 8-anilinonaphthalene-1-sulphonic acid, fluorescence of the epsilon-derivative of acetyl-CoA or ATP [fluorescent analogues; Secrist, Barrio, Leonard & Weber (1972) Biochemistry11, 3499-3506] was not changed when either one was added to the enzyme. Secondary-structure composition of chicken liver pyruvate carboxylase estimated from the far-u.v. c.d. spectrum of the enzyme is 27% helix, 7% beta-pleated sheet and 66% other structural types.  相似文献   

19.
The genome annotations of all sequenced Dehalococcoides strains lack a citrate synthase, although physiological experiments have indicated that such an activity should be encoded. We here report that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrate synthase. Gene cbdbA1708 was heterologously expressed in Escherichia coli, and the recombinant enzyme was purified. The enzyme catalyzed the condensation of oxaloacetate and acetyl coenzyme A (acetyl-CoA) to citrate. The protein did not have homocitrate synthase activity and was inhibited by citrate, and Mn2+ was needed for full activity. The stereospecificity of the heterologously expressed citrate synthase was determined by electrospray ionization liquid chromatography-mass spectrometry (ESI LC/MS). Citrate was synthesized from [2-(13)C]acetyl-CoA and oxaloacetate by the Dehalococcoides recombinant citrate synthase and then converted to acetate and malate by commercial citrate lyase plus malate dehydrogenase. The formation of unlabeled acetate and 13C-labeled malate proved the Re face-specific activity of the enzyme. Shotgun proteome analyses of cell extracts of strain CBDB1 demonstrated that cbdbA1708 is expressed in strain CBDB1.  相似文献   

20.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号