首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the cartilage differentiation of mesenchymal stem cells (MSCs) would be of particular interest since one strategy for cell-based treatment of cartilage defects emphasizes the use of cells that are in a differentiated state. The present study has attempted to evaluate the effects of two well-known glycogen synthase kinase-3 inhibitors, including lithium chloride (LiCl) and SB216763 on a human marrow-derived MSC (hMSC) chondrogenic culture. Passaged-3 MSCs were condensed into small pellets and cultivated in the following groups based on the supplementation of chondrogenic medium: transforming growth factor (TGF)-β1, TGF-β1 + LiCl, TGF-β1 + SB216763, TGF-β3, TGF-β3 + LiCl, and TGF-β3 + SB216763. The cultures were maintained for 21 days and then analyzed for expression of Sox9, aggrecan, collagen II, β-catenin, and axin genes. Deposition of glycosaminoglycan (GAG) in the cartilage matrix was also measured for certain cultures. The presence of both LiCl and SB216763 along with TGF-β in the MSC chondrogenic culture led to the up-regulation of cartilage-specific genes. TGF-β3 appeared much better than TGF-β1. Based on our findings, SB216763 was more effective in up-regulation of cartilage-specific genes. These chondrogenic effects appeared to be mediated through the Wnt signaling pathway since β-catenin and axin tended to be up-regulated and down-regulated, respectively. In the culture with SB216763 + TGF-β3, significantly more GAG was deposited (P < 0.05). In conclusion, addition of either SB216763 or LiCl to hMSC chondrogenic culture up-regulates cartilage-specific gene expression and enhances GAG deposition in the culture.  相似文献   

2.
The skeleton is formed by two different mechanisms. In intramembranous ossification, osteoblasts form bone directly, whereas in endochondral ossification, chondrocytes develop a cartilage template, prior to osteoblast-mediated skeletogenesis. Lactoferrin is an iron-binding glycoprotein belonging to the transferrin family. It is known to promote the growth and differentiation of osteoblasts. In this study, we investigated the effects of bovine lactoferrin on the chondrogenic differentiation of ATDC5 chondroprogenitor cells. This mouse embryonic carcinoma-derived clonal cell line provides an in vitro model of chondrogenesis. Lactoferrin treatment of differentiating ATDC5 cells promoted cell proliferation in the initial stage of the differentiation process. However, lactoferrin treatment resulted in inhibition of hypertrophic differentiation, characterized by suppression of alkaline phosphatase activity, aggrecan synthesis and N-cadherin expression. This inhibitory effect was accompanied by sustained Sox9 expression, as well as increased Smad2/3 expression and phosphorylation, suggesting that lactoferrin regulates chondrogenic differentiation by up-regulating the Smad2/3-Sox9 signaling pathway.  相似文献   

3.
4.
Although genetic evidence has demonstrated a role for Wnt5b during cartilage and limb development, little is known about the mechanisms underlying Wnt5b-regulated chondrocyte differentiation. We observed that Wnt5b inhibited chondrocyte hypertrophy and expression of type X collagen. In addition, Wnt5b regulated the overall size of chondrogenic cultures, suggesting that Wnt5b regulates other processes involved in cartilage development. We therefore investigated the signaling pathways by which Wnt5b influences differentiation. Wnt5b activated known calcium-dependent signaling pathways and JNK, a component of the planar cell polarity pathway. Since the planar cell polarity pathway regulates process such as cell migration and cell aggregation that are involved in limb development, we assayed for effects of Wnt5b on these processes. We observed a marked increase chondroprogenitor cell migration with Wnt5b expression. This effect was blocked by inhibition of JNK, but not by inhibition of other Wnt5b-responsive factors. Expression of Wnt5b also disrupted the cellular aggregation associated with mesenchymal condensation. Decreased aggregation was associated with reduced cadherin expression as well as increased cadherin receptor turnover. This increase in cadherin receptor turnover was associated with an increase in Src-dependent beta-catenin phosphorylation downstream of Wnt5b. Our data demonstrate that not only does Wnt5b inhibit chondrocyte hypertrophy, but document a novel role for Wnt5b in modulating cellular migration through the JNK-dependent and cell adhesion through an activation of Src and subsequent cadherin receptor turnover.  相似文献   

5.
The Wnt signaling pathway plays a crucial role in the development and homeostasis of a variety of adult tissues and, as such, is emerging as an important therapeutic target for numerous diseases. Factors involved in the Wnt pathway are expressed throughout limb development and chondrogenesis and have been shown to be critical in joint homeostasis and endochondral ossification. Therefore, in this review, we discuss Wnt regulation of chondrogenic differentiation, hypertrophy and cartilage function. Moreover, we detail the role of the Wnt signaling pathway in cartilage degeneration and its potential to act as a target for therapy in osteoarthritis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

8.
The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates Wnt-7a/b-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of b-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with b-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of b-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of b-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.  相似文献   

9.
10.
Notch signaling is involved in several cell lineage determination processes during embryonic development. Recently, we have shown that Sox9 is most likely a primary target gene of Notch1 signaling in embryonic stem cells (ESCs). By using our in vitro differentiation protocol for chondrogenesis from ESCs through embryoid bodies (EBs) together with our tamoxifen-inducible system to activate Notch1, we analyzed the function of Notch signaling and its induction of Sox9 during EB differentiation towards the chondrogenic lineage. Temporary activation of Notch1 during early stages of EB, when lineage determination occurs, was accompanied by rapid and transient Sox9 upregulation and resulted in induction of chondrogenic differentiation during later stages of EB cultivation. Using siRNA targeting Sox9, we knocked down and adjusted this early Notch1-induced Sox9 expression peak to non-induced levels, which led to reversion of Notch1-induced chondrogenic differentiation. In contrast, continuous Notch1 activation during EB cultivation resulted in complete inhibition of chondrogenic differentiation. Furthermore, a reduction and delay of cardiac differentiation observed in EBs after early Notch1 activation was not reversed by siRNA-mediated Sox9 knockdown. Our data indicate that Notch1 signaling has an important role during early stages of chondrogenic lineage determination by regulation of Sox9 expression.  相似文献   

11.
12.
Mouse and human genetic data suggests that Wnt5a is required for jaw development but the specific role in facial skeletogenesis is unknown. We mapped expression of WNT5A in the developing chicken skull and found that the highest expression was in early Meckel's cartilage but by stage 35 expression was decreased to background. We focused on chondrogenesis by targeting a retrovirus expressing WNT5A to the mandibular prominence prior to cell differentiation. Unexpectedly, there were no phenotypes in the first 6 days following injection; however later the mandibular bones and Meckel's cartilage were reduced or missing on the treated side. To examine the effects on cartilage differentiation we treated micromass cultures from mandibular mesenchyme with Wnt5a-conditioned media (CM). Similar to in vivo viral data, cartilage differentiates normally, but, after 6 days of culture, nearly all Alcian blue staining is lost. Collagen II and aggrecan were also decreased in treated cultures. The matrix loss was correlated with upregulation of metalloproteinases, MMP1, MMP13, and ADAMTS5 (codes for Aggrecanase). Moreover, Marimastat, an MMP and Aggrecanase inhibitor rescued cartilage matrix in Wnt5a-CM treated cultures. The pathways mediating these cartilage and RNA changes were investigated using luciferase assays. Wnt5a-CM was a potent inhibitor of the canonical pathway and strongly activated JNK/PCP signaling. To determine whether the matrix loss is mediated by repression of canonical signaling or activation of the JNK pathway we treated mandibular cultures with either DKK1, an antagonist of the canonical pathway, or a small molecule that antagonizes JNK signaling (TCS JNK 6o). DKK1 slightly increased cartilage formation and therefore suggested that the endogenous canonical signaling represses chondrogenesis. To test this further we added an excess of Wnt3a-CM and found that far fewer cartilage nodules differentiated. Since DKK1 did not mimic the effects of Wnt5a we excluded the canonical pathway from mediating the matrix loss phenotype. The JNK antagonist partially rescued the Wnt5a phenotype supporting this non-canonical pathway as the main mediator of the cartilage matrix degradation. Our study reveals two new roles for WNT5A in development and disease: 1) to repress canonical Wnt signaling in cartilage blastema in order to promote normal differentiation and 2) in conditions of excess to stimulate degradation of mature cartilage matrix via non-canonical pathways.  相似文献   

13.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

14.
15.
16.
17.
18.
The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation to determine cell fate during embryogenesis. Lithium chloride (LiCl) is known to activate canonical Wnt signaling by inhibiting glycogen synthetase kinase-3β and consequently stabilizing free cytosolic β-catenin. To understand the role of the Wnt/β-catenin pathway in the regulation of porcine myoblast differentiation, we studied the effects of LiCl on cultured porcine myoblasts and β-catenin expression. A supplementation of 25 mM LiCl induced myoblast differentiation into myotubes over 3 days of culture. By semi-quantitative RT-PCR analyses, levels of mRNA encoding MyoD, Myogenin, Myf5 and several Wnt-responsive genes in the cultured myoblast cells were significantly increased after LiCl treatment. Using Western blotting and immunofluorescence analysis, we found that the protein levels of β-catenin were consistently increased by LiCl. Meanwhile, phosphorylated GSK-3β at Ser9 levels were also increased as an indicator of GSK-3β inactivation. Additionally, the nuclear staining of endogenous β-catenin was also significantly increased in porcine myoblasts 48 h after LiCl treatment. These results provided additional evidence that Wnt/β-catenin is a significant pathway that regulates myogenic differentiation. An enhanced level of β-catenin plays a positive role in porcine myoblast differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号