首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
应激状态下NO的胃粘膜保护作用及其与壁细胞泌酸的关系   总被引:4,自引:0,他引:4  
目的:探讨应激状态下一氧化氮(NO)的胃粘膜保护作用及其与壁细胞泌酸的关系.方法:采用水浸-束缚应激(WRS)方法制备应激性溃疡(SU)动物模型,检测胃粘膜溃疡指数(UI)、胃粘膜NO含量和壁细胞H ,K -ATPase活性,观察L-硝基精氨酸甲酯(L-NAME)和L-精氨酸(L-Arg)对应激后大鼠壁细胞H ,K -ATPase活性及胃粘膜损伤的影响.结果:L-NAME(20 mg·kg-1)可使胃粘膜NO含量减少(P<0.01),壁细胞H ,K -AT-Pase活性增加(P<0.05),并加重应激所致的胃粘膜损伤;L-Arg(300 mg·kg-1)则使胃粘膜NO含量增加(P<0.01),壁细胞H ,K -ATPase活性下降(P<0.05),减轻应激所致胃粘膜损伤.结论:NO对应激状态下大鼠胃粘膜具有保护作用,其机制与抑制壁细胞H ,K -ATPase活性有关.  相似文献   

2.
Na-K-2Cl cotransporter-1 (NKCC) has been detected at exceptionally high levels in the gastric mucosa of several species, prompting speculation that it plays important roles in gastric secretion. To investigate this possibility, we 1) immunolocalized NKCC protein in the mouse gastric mucosa, 2) compared the volume and composition of gastric fluid from NKCC-deficient mice and their normal littermates, and 3) measured acid secretion and electrogenic ion transport by chambered mouse gastric mucosa. NKCC was localized to the basolateral margin of parietal cells, mucous neck cells, and antral base cells. In NKCC-deficient mice, gastric secretions of Na+, K+, Cl-, fluid, and pepsinogen were markedly impaired, whereas secretion of acid was normal. After stimulation with forskolin or 8-bromo-cAMP, chambered corpus mucosa vigorously secreted acid, and this was accompanied by an increase in transmucosal electrical current. Inhibition of NKCC with bumetanide reduced current to resting levels but had no effect on acid output. Although prominent pathways for basolateral Cl- uptake (NKCC) and apical Cl- exit [cystic fibrosis transmembrane conductance regulator (CFTR)] were found in antral base cells, no impairment in gastric secretion was detected in CFTR-deficient mice. Our results establish that NKCC contributes importantly to secretions of Na+, K+, Cl-, fluid, and pepsinogen by the gastric mucosa through a process that is electrogenic in character and independent of acid secretion. The probable source of the NKCC-dependent nonacidic electrogenic fluid secretion is the parietal cell. The observed dependence of pepsinogen secretion on NKCC supports the concept that a nonacidic secretory stream elaborated from parietal cells facilitates flushing of the proenzyme from the gastric gland lumen.  相似文献   

3.
Gastrin is the principal hormonal inducer of gastric acid secretion. The cellular targets for gastrin in the stomach are the acid-secreting parietal cell and histamine-producing enterochromaffin-like (ECL) cell. Gastrin is also a growth factor, with hypergastrinemia resulting in increased proliferation of gastric progenitor cells and a thickened mucosa. This review presents insights into gastrin function revealed by genetically engineered mouse models, demonstrating a new role for gastrin in the maturation of parietal and ECL cells. Thus, gastrin regulates many aspects of gastric physiology, with tight regulation of gastrin levels required to maintain balanced growth and function of gastric epithelial cells.  相似文献   

4.
Previous studies have demonstrated that gastric mucosa contained high levels of the polypeptide diazepam binding inhibitor, the endogenous ligand of the peripheral-type benzodiazepine receptor (PBR). However, the expression and function of this receptor protein in these tissues have not been investigated. Immunohistochemistry identified an intense PBR immunoreactivity in the mucous and parietal cells of rat gastric fundus and in the mucous cells of antrum. Immunoelectron microscopy revealed the mitochondrial localization of PBR in these cells. Binding of isoquinoline PK 11195 and benzodiazepine Ro5-4864 to gastric membranes showed that fundus had more PBR-binding sites than antrum, displaying higher affinity for PK 11195 than Ro5-4864. In a Ussing chamber, PK 11195 and Ro5-4864 increased short-circuit current (I(sc)) in fundic and antral mucosa in a concentration-dependent manner in the presence of GABA(A) and central benzodiazepine receptor (CBR) blockers. This increase in I(sc) was abolished after external Cl(-) substitution and was sensitive to chloride channels or transporter inhibitors. PK 11195-induced chloride secretion was also 1) sensitive to verapamil and extracellular calcium depletion, 2) blocked by thapsigargin and intracellular calcium depletion, and 3) abolished by the mitochondrial pore transition complex inhibitor cyclosporine A. PK 11195 had no direct effect on H(+) secretion, indicating that it stimulates a component of Cl(-) secretion independent of acid secretion in fundic mucosa. These data demonstrate that mucous and parietal cells of the gastric mucosa express mitochondrial PBR functionally coupled to Ca(2+)-dependent Cl(-) secretion, possibly involved in the gastric mucosa protection.  相似文献   

5.
The fine structure of the parietal (oxyntic) cell in the gastric glands (corpus of the stomach) of the dog was examined under conditions of active gastric acid secretion and compared with cellular structure in the non-acid-secretory (basal) state. Animals, in both acute and chronic experiments, were equipped with gastric fistulae so that gastric juice could be collected for analysis of total acidity, free acidity, volume, and pH prior to biopsy of the gastric mucosa. The specimens of mucosa were fixed in buffered OsO4 and embedded in n-butyl methacrylate and the thin sections were stained with lead hydroxide before examination in the electron microscope. A majority of parietal cells showed an alteration of fine structure during stimulation of gastric acid secretion by a number of different techniques (electrical vagal stimulation, histamine administration, or insulin injection). The changes in fine structure affected mainly the smooth surfaced vesicular elements and the intracellular canaliculi in the cytoplasm of the cell. The mitochondria also appeared to be involved to some extent. During acid secretion a greater concentration of smooth surface profiles is found adjacent to the walls of the intracellular canaliculi; other parietal cells exhibited a marked decrease in number of smooth surfaced elements. Intracellular canaliculi, always present in non-acid-secreting oxyntic cells, develop more extensively in cells of acid-secreting gastric glands. The surface area of these canaliculi is greatly increased by the elaboration of a large number of closely approximated and elongated microvilli. Still other parietal cells apparently in a different stage of the secretory cycle exhibit non-patent canaliculi lacking prominence; such cells have very few smooth surfaced vesicular elements. These morphological findings correlated with the acid-secretory state of the stomach provide evidence that the parietal cell participates in the process of acid secretion.  相似文献   

6.
We have studied the in vitro effect of VIP and histamine on ultrastructure of the parietal cells in isolated guinea pig fundic glands. The morphological changes induced by histamine in the parietal cells can be compared to those observed after histamine stimulation in vivo or in vitro on gastric mucosa preparations. In contrast, VIP incubation did not produce the ultrastructural changes related to gastric acid secretion, in resting parietal cells. Pretreatment of the glands by VIP resulted in a remarkable suppression of the histamine effect, since the parietal cells assumed an almost resting state. The data (1) indicate that the parietal cells in isolated gastric glands of the guinea pig retain in vitro the capacity to undergo the ultrastructural changes that are related to acid secretion in vivo after histamine or cAMP and (2) suggest that VIP is an inhibitor of histamine-induced gastric acid secretion in the guinea pig. It is proposed that VIP could act directly on the parietal cell via cAMP-phosphodiesterase activation, or indirectly via gastric somatostatin and/or prostaglandin secretions, inhibiting the H2 receptor-cAMP system of the parietal cell.  相似文献   

7.
Ultracytochemistry was used to study and compare cytochromooxidase, succinate dehydrogenase and NADH-dehydrogenase activity in gastric mucosa parietal cells in health and in gastric carcinoma associated with decreased acidity of gastric juice. The study demonstrated the reduced activity of the enzymes listed in the mucosal parietal cells in gastric carcinoma. This finding is interpreted as a consequence of disturbed energy supply of hydrochloric acid secretion in gastric carcinoma.  相似文献   

8.
We have tested the ability of zinc acexamate (ZAC) to prevent platelet-activating-factor (Paf) induced gastric damage in rats. Lesions were characterized by a vascular congestion affecting the entire mucosa, oedema, haemorrhage and frequent necrosis of the more superficial areas. The gastric damage appearing after Paf was accompanied by degranulation of gastric mast cells. Leukocytes were often seen at the submucosal level. Oral pretreatment with ZAC reduced in a dose-dependent manner both gastric damage and mast cell degranulation observed after Paf. ZAC administered orally at a dose of 100 mg kg-1 statistically inhibited (p less than 0.01) gastric damage and mast cell degranulation. ZAC did not affect the hypotension induced by Paf confirming that gastric damage and hypotension appearing in rats after Paf administration are two independent phenomena. The present findings indicate that the inhibitory effect of ZAC upon gastric lesions induced by Paf may be related to the different protective actions exhibited by this zinc compound in a wide variety of experimental models of gastric ulcer.  相似文献   

9.
Beales IL 《Life sciences》2004,75(25):2983-2995
The hormone gastrin stimulates proliferation of the gastric mucosa. Inflammation of the stomach is also associated with increased proliferation. The proliferative response is important in the reparative response to injury but can be deleterious by predisposing to the development of cancer. Parietal cells, but not the cells in the proliferative zone of the gastric glands, express the appropriate gastrin receptor. Parietal cells may mediate the trophic effects of gastrin by secreting other growth factors. The role of parietal cells in the proliferative responses has been examined in this study. Rabbit parietal cells were cultured with gastrin or the cytokine interleukin-1beta for 18 hours. The conditioned medium from gastrin or IL-1beta stimulated parietal cells increased proliferation of HeLa cells in an epidermal growth factor-receptor dependant manner. Gastrin and IL-1beta stimulated the secretion of heparin-binding epidermal growth factor and amphiregulin but not transforming growth factor-alpha from parietal cells. Combinations of gastrin and IL-1beta on growth factor secretion were synergistic. The protein kinase C inhibitor staurosporine abolished these stimulatory effects of gastrin and IL-1beta. Divergent effects on histamine-stimulated acid secretion were observed; 18 hours pre-treatment with gastrin enhanced acid secretion by 50% but IL-1beta inhibited acid secretion in both control and gastrin pre-treated parietal cells. The acid-secreting parietal cell plays a central role in the regulation of mucosal proliferation in gastric inflammation. Secretion of paracrine growth factors by parietal cells may be an important point of integration between the endocrine and inflammatory stimuli in determining mucosal responses to injury and inflammation.  相似文献   

10.
Peptic ulcer is a common disorder of gastrointestinal system and its pathogenesis is multifactorial, where smoking and nicotine have significant adverse effects. Smoking and chronic nicotine treatment stimulate basal acid output which is more pronounced in the smokers having duodenal ulcer. This increased gastric acid secretion is mediated through the stimulation of H2-receptor by histamine released after mast cell degranulation and due to the increase of the functional parietal cell volume or secretory capacity in smokers. Smoking and nicotine stimulate pepsinogen secretion also by increasing chief cell number or with an enhancement of their secretory capacity. Long-term nicotine treatment in rats also significantly decreases total mucus neck cell population and neck-cell mucus volume. Smoking also increases bile salt reflux rate and gastric bile salt concentration thereby increasing duodenogastric reflux that raises the risk of gastric ulcer in smokers. Smoking and nicotine not only induce ulceration, but they also potentiate ulceration caused by H. pylori, alcohol, nonsteroidal anti-inflammatory drugs or cold restrain stress. Polymorphonuclear neutrophils (PMN) play an important role in ulcerogenesis through oxidative damage of the mucosa by increasing the generation of reactive oxygen intermediates (ROI), which is potentiated by nicotine and smoking. Nicotine by a cAMP-protein kinase A signaling system elevates the endogenous vasopressin level, which plays an aggressive role in the development of gastroduodenal lesions. Smoking increases production of platelet activating factor (PAF) and endothelin, which are potent gastric ulcerogens. Cigarette smoking and nicotine reduce the level of circulating epidermal growth factor (EGF) and decrease the secretion of EGF from the salivary gland, which are necessary for gastric mucosal cell renewal. Nicotine also decreases prostaglandin generation in the gastric mucosa of smokers, thereby making the mucosa susceptible to ulceration. ROI generation and ROI-mediated gastric mucosal cell apoptosis are also considered to be important mechanism for aggravation of ulcer by cigarette smoke or nicotine. Both smoking and nicotine reduce angiogenesis in the gastric mucosa through inhibition of nitric oxide synthesis thereby arresting cell renewal process. Smoking or smoke extract impairs both spontaneous and drug-induced healing of ulcer. Smoke extract also inhibits gastric mucosal cell proliferation by reducing ornithine decarboxylase activity, which synthesises growth-promoting polyamines. It is concluded that gastric mucosal integrity is maintained by an interplay of some aggressive and defensive factors controlling apoptotic cell death and cell proliferation and smoking potentiates ulcer by disturbing this balance.  相似文献   

11.
EGF, produced mainly by salivary glands, inhibits gastric acid secretion, stimulates the proliferation of gastric mucosal cells and protects the mucosa against various ulcerogens, but its role in the pathogenesis of stress ulcerations is unknown. In this study, rats with intact or resected salivary glands were exposed to water immersion and restraint stress (WRS) without and with pretreatment with exogenous EGF or dimethyl PGE2 (dmPGE2) at doses which were shown previously to protect the mucosa against topical irritants. During 1.5-12 h of WRS, the formation of gastric ulcerations increased progressively with the duration of stress reaching peak after 6 h of stress and being significantly higher in rats with removed salivary glands than in intact animals. Gastric acid secretion and DNA synthesis in oxyntic mucosa declined with the duration of WRS, but after sialoadenectomy a significant increase in gastric acid secretion and a further decline in DNA synthesis were observed after WRS. EGF contents in the gastric lumen and the gastric mucosa were several times higher in rats subjected to stress than in control unstressed animals, indicating that stress causes an extensive release of EGF. Both exogenous EGF (17 nmol/kg/h) and dmPGE2 (143 nmol/kg) prevented, in part, the formation of gastric lesions, while inhibiting gastric acid secretion both in rats with intact or resected salivary glands. We conclude that water immersion and restraint stress is accompanied by an excessive release of EGF, which appears to attenuate gastric secretion, enhances the DNA synthesis and may limit the formation of stress-induced gastric ulcerations.  相似文献   

12.
It has been controversial whether the ClC-2 chloride channel is involved in hydrochloric acid secretion of gastric parietal cells. Here, we investigated whether ClC-2 is the apical Cl- channel associated with gastric acid secretion. Two anti-ClC-2 antibodies used in this study reacted with cloned ClC-2 protein expressed in HEK293 cells. In isolated rabbit gastric glands, significant expression of ClC-2 mRNA was observed, but the presence of ClC-2 protein was not clear. Furthermore, no expression of ClC-2 protein was observed in isolated rat and human gastric mucosa. Immunohistochemistry on the rat gastric mucosa showed no significant expression of ClC-2 protein in the parietal cells which showed abundant expression of H+,K+-ATPase. These results indicate that ClC-2 may not be a Cl- -transporting protein for gastric acid secretion in parietal cells.  相似文献   

13.
Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from L-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.  相似文献   

14.
Mitochondrial superoxide dismutase (SOD2) prevents accumulation of the superoxide that arises as a consequence of oxidative phosphorylation. However, SOD2 is a target of oxidative/nitrosative inactivation, and reduced SOD2 activity has been demonstrated to contribute to portal hypertensive gastropathy. We investigated the consequences of gastric parietal cell-specific SOD2 deficiency on mitochondrial function and gastric injury susceptibility. Mice expressing Cre recombinase under control of the parietal cell Atpase4b gene promoter were crossed with mice harboring loxP sequences flanking the sod2 gene (SOD2 floxed mice). Cre-positive mice and Cre-negative littermates (controls) were used in studies of SOD2 expression, parietal cell function (ATP synthesis, acid secretion, and mitochondrial enzymatic activity), increased oxidative/nitrosative stress, and gastric susceptibility to acute injury. Parietal cell SOD2 deficiency was accompanied by a 20% (P < 0.05) reduction in total gastric SOD activity and a 93% (P < 0.001) reduction in gastric SOD2 activity. In SOD2-deficient mice, mitochondrial aconitase and ATP synthase activities were impaired by 36% (P < 0.0001) and 44% (P < 0.005), respectively. Gastric tissue ATP content was reduced by 34% (P < 0.002). Basal acid secretion and peak secretagogue (histamine)-induced acid secretion were reduced by 43% (P < 0.0001) and 40% (P < 0.0005), respectively. There was a fourfold (P < 0.02) increase in gastric mucosal apoptosis and 41% (P < 0.001) greater alcohol-induced gastric damage in the parietal cell SOD2-deficient mice. Our findings indicate that loss of parietal cell SOD2 leads to mitochondrial dysfunction, resulting in perturbed energy metabolism, impaired parietal cell function, and increased gastric mucosal oxidative stress. These alterations render the gastric mucosa significantly more susceptible to acute injury.  相似文献   

15.
A modified, highly selective vagotomy-seromyotomy of the lesser curvature of the stomach was performed on five groups of cats. The horseradish peroxidase (HRP) tract-tracing method was used to detect the regeneration or reinnervation of vagal nerve branches. Morphological changes to the parietal cells and to the gastric mucosa were also examined by light and electron microscopy. Following surgery, the cats were sacrificed at the fourth, eighth, twelfth, sixteenth and the twentieth week. At the sixteenth week, partial regeneration of vagal nerve branches was found. Between the fourth and the twelfth week there was a significant increase in the number of parietal cells per 0.1 mm-wide of mucosa column and in the volume fraction of the mucosa made up of parietal cells. Of the four types of parietal cells, "stimulated", "partially stimulated", "returning" and "resting", the resting type was predominant after seromyotomy, especially between the fourth and the twelfth week. Based on the above observation, we concluded that the modified lesser-curvature seromyotomy depresses the function and responsiveness of the parietal cells despite an increase in their number and in their volume fraction.  相似文献   

16.
Isolated cells of rat gastric mucosa were obtained by treatment of rat stomach with pronase. Two fractions were isolated, one of which was rich (up to 90%) and the second one poor (to 25%) of parietal cells. Using specific antagonists and agonists of H1- and H2-receptors of histamine (diphenhydramine, metiamide, cimetidine, impromidine, dimaprit) the H2-receptors of histamine were shown to be localized in parietal cells. A preferential binding of (3H)prostaglandin E2 by the receptor proteins of plasma membranes of non-parietal (presumably mucoid) cells was found. The data obtained indicate that rat gastric mucosa contains receptors of histamine and PGE2 which differ in their intracellular localization and strictly selectively bind (3H)histamine and (3H)PGE2. It is assumed that the starting point in the mechanism of action of these intercellular regulators on gastric secretion is probably the process of their specific recognition by the protein receptors localized in functionally different cells.  相似文献   

17.
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.  相似文献   

18.
Suckling rats were treated every 8 h by intragastric instillation of 16,16-dimethyl prostaglandin E2 (PG) from postnatal day 7 to 11. As compared to saline control treatment, PG increased the thickness of antral and corpus mucosa, the volume density of parietal cells, the mean individual parietal cell volume and pentagastrin-stimulated acid secretion at the end of the treatment. Plasma gastrin and corticosterone levels were depressed by PG while plasma thyroxine levels were unchanged. These structural and functional changes suggest PG-induced accelerated maturation of gastric mucosa.  相似文献   

19.
We have previously identified cells containing the enzyme nitric oxide (NO) synthase (NOS) in the human gastric mucosa. Moreover, we have demonstrated that endogenous and exogenous NO has been shown to decrease histamine-stimulated acid secretion in isolated human gastric glands. The present investigation aimed to further determine whether this action of NO was mediated by the activation of guanylyl cyclase (GC) and subsequent production of cGMP. Isolated gastric glands were obtained after enzymatic digestion of biopsies taken from the oxyntic mucosa of healthy volunteers. Acid secretion was assessed by measuring [(14)C]aminopyrine accumulation, and the concentration of cGMP was determined by radioimmunoassay. In addition, immunohistochemistry was used to examine the localization of cGMP in mucosal preparations after stimulation with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). SNAP (0.1 mM) was shown to decrease acid secretion stimulated by histamine (50 microM); this effect was accompanied by an increase in cGMP production, which was histologically localized to parietal cells. The membrane-permeable cGMP analog dibuturyl-cGMP (db-cGMP; 0.1-1 mM) dose dependently inhibited acid secretion. Additionally, the effect of SNAP was prevented by preincubating the glands with the GC inhibitor 4H-8-bromo-1,2,4-oxadiazolo[3,4-d]benz[b][1,4]oxazin-1-one (10 microM). We therefore suggest that NO in the human gastric mucosa is of physiological importance in regulating acid secretion. Furthermore, the results show that NO-induced inhibition of gastric acid secretion is a cGMP-dependent mechanism in the parietal cell involving the activation of GC.  相似文献   

20.
The A2B adenosine receptor (A2BR) mediates biological responses to extracellular adenosine in a wide variety of cell types. Adenosine deaminase (ADA) can degrade adenosine and bind extracellularly to adenosine receptors. Adenosine modulates chloride secretion in gastric glands and gastric mucosa parietal cells. A close functional link between surface A2BR and ADA has been found on cells of the immune system, but whether this occurs in the gastrointestinal tract is unknown. The goal of this study was to determine whether A2BR and ADA are coexpressed at the plasma membrane of the acid-secreting gastric mucosa parietal cells. We used isolated gastric parietal cells after purification by centrifugal elutriation. The membrane fraction was obtained by sucrose gradient centrifugation. A2BR mRNA expression was analyzed by RT-PCR. The surface expression of A2BR and ADA proteins was evaluated by Western blotting, flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are expressed in cell membranes isolated from gastric parietal cells. They show a high degree of colocalization that is particularly evident in the surface of contact between parietal cells. The confocal microscopy data together with flow cytometry analysis suggest a tight association between A2BR and ADA that might be specifically linked to glandular secretory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号