首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of glycosylation for the re-expression of surface immunoglobulin in trypsin-treated MOPC 315 plasmacytoma cells was examined by using tunicamycin, an antibiotic that prevents glycosylation by inhibiting the formation of N-acetylglucosamine-lipid intermediates. Tunicamycin greatly inhibited the secretion of nonglycosylated MOPC 315 IgA in trypsin-treated cells. Two hours after trypsin treatment, there was an 80% inhibition of secretion as measured by immunoprecipitation assays of biosynthetically labeled immunoglobulin. However, tunicamycin had no effect on the time course of re-expression of surface IgA in these cells as measured by TNP-sheep erythrocyte rosette formation and [125I] TNP-albumin binding to the plasmacytoma cells. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of 125I-labeled cell surface IgA re-expressed in the presence of tunicamycin revealed a protein with an apparent m.w. identical to nonglycosylated MOPC 315 alpha-chains, further suggesting that nonglycosylated surface IgA was being inserted into the plasma membrane. This protein did not bind to concanavalin A-Sepharose. These data suggest that in MOPC 315 plasmacytoma cells, glycosylation is necessary for immunoglobulin secretion but not for immunoglobulin expression at the cell surface.  相似文献   

2.
Tunicamycin, an antibiotic that prevents glycosylation of glycoproteins by blocking the formation of N-acetylglucosamine-lipid intermediates, was used to study the importance of glycosylation for the secretion of immunoglobulins by mouse plasmacytoma lines that produce immunoglobulins of different classes. Biosynthetically labeled secreted and intracellular immunoglobulins were measured by immunoprecipitation assays. Tunicamycin, at a concentration of 0.5 mug/ml produced an 81% inhibition of IgM secretion by MOPC 104E plasma cells without significantly affecting the initial rate of synthesis of intracellular IgM. No increase in the intracellular degradation of nonglycosylated IgM could be demonstrated. Tunicamycin also produced a 64% average inhibition of IgA secretion by several mouse IgA-secreting plasmacytoma lines. In contrast, despite inhibiting the incorporation of D-[14C] glucosamine into newly synthesized IgG, tunicamycin only produced a 28% average inhibition of IgG secretion, which was only slightly more than the nonspecific inhibition of secretion of the normally nonglycosylated lambda2 light chains by variant MOPC 315 plasmacytomas. These data indicate that the extent of inhibition of immunoglobulin secretion produced by tunicamycin depends on the immunoglobulin class produced by the plasma cell.  相似文献   

3.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

4.
The addition and endoplasmic reticulum (ER) glucosidase processing of N-linked glycans is essential for the secretion of rat hepatic lipase (HL). Human HL is distinct from rat HL by the presence of four as opposed to two N-linked carbohydrate side chains. We examined the role of N-linked glycosylation and calnexin interaction in human HL secretion from Chinese hamster ovary (CHO) cells stably expressing a human HL cDNA. Steady-state and pulse-chase labeling experiments established that human HL was synthesized as an ER-associated precursor containing high mannose N-linked glycans. Secreted HL had a molecular mass of approximately 65 kDa and contained mature N-linked sugars. Inhibition of N-linked glycosylation with tunicamycin (TM) prevented secretion of HL enzyme activity and protein mass. In contrast, incubation of cells with the ER glucosidase inhibitor, castanospermine (CST), decreased human HL protein secretion by 60%, but allowed 40% of fully active HL to be secreted. HL protein mass and enzyme activity were also recovered from the media of a CHO-derivative cell line genetically deficient in ER glucosidase I activity (Lec23) that was transiently transfected with a human HL cDNA. Co-immunoprecipitation experiments demonstrated that newly synthesized human HL bound to the lectin-like ER chaperone, calnexin, and that this interaction was inhibited by TM and CST. These results suggest that under normal conditions calnexin may increase the efficiency of HL export from the ER. Whereas a significant proportion of human HL can attain activity and become secreted in the absence of glucose trimming and calnexin association, these interrelated processes are nevertheless essential for the expression of full HL activity.  相似文献   

5.
Previous work has shown that the Sindbis structural proteins, core, the internal protein, and PE2 and E1, the integral membrane glycoproteins are synthesized as a polyprotein from a 26S mRNA; core PE2 and E1 are derived by proteolytic cleavage of a nascent chain. Newly synthesized core protein remains on the cytoplasmic side of the endoplasmic reticulum while newly synthesized PE2 and E1 are inserted into the lipid bilayer, presumably via their amino-termini. PE2 and E1 are glycosylated as nascent chains. Here, we examine a temperature-sensitive mutant of Sindbis virus which fails to cleave the structural proteins, resulting in the production of a polyprotein of 130,000 mol wt in which the amino-termini of PE2 and E1 are internal to the protein. Although the envelope sequences are present in this protein, it is not inserted into the endoplasmic reticulum bilayer, but remains on the cytoplasmic side as does the core protein in cells infected with wild-type Sindbis virus. We have also examined the fate of PE2 and E1 in cells treated with tunicamycin, an inhibitor of glycosylation. Unglycosylated PE2 and E1 are inserted normally into the lipid bilayer as are the glycosylated proteins. These results are consistent with the notion that a specific amino-terminal sequence is required for the proper insertion of membrane proteins into the endoplasmic reticulum bilayer, but that glycosylation is not required for this insertion.  相似文献   

6.
Analysis of nascent heavy chains isolated from MPC11 (gamma 2b heavy chains) and MOPC 21 (gamma 1 heavy chains) mouse myeloma cells demonstrates an accumulation of nascent heavy chains which are slightly smaller in mass (approximately 35,000 daltons) than nascent heavy chains which have just been glycosylated (approximately 38,000 daltons). The accumulation of 35,000-dalton nascent heavy chain appears to be a consequence of the glycosylation process since tunicamycin, an inhibitor of glycosylation, abolishes the apparent translational block manifested by the accumulation of 35,000-dalton nascent chains. Tunicamycin also causes a 15 to 25% increase n the relative rate of synthesis of heavy chain compared to the corresponding rate of synthesis of the nonglycosylated light chain synthesized by the same cell. These results suggest that the translation block, caused by the glycosylation process, of heavy chain synthesis contributes to the imbalance of heavy chain and light chain biosynthesis observed in malignant and normal lymphoid cells.  相似文献   

7.
Role of glycosylation in secretion of yeast acid phosphatase   总被引:1,自引:0,他引:1  
V Mrsa  S Barbari?  B Ries  P Mildner 《FEBS letters》1987,217(2):174-179
The minimal glycosylation requirement for acid phosphatase secretion and activity was investigated using tunicamycin, an inhibitor of protein glycosylation, and a yeast mutant defective in the synthesis of oligosaccharide outer chains. The results obtained show that outer chain addition is not essential for secretion of active enzyme and that only 4 core chains, out of 8 normally attached to a protein subunit, are sufficient for enzyme transport to the periplasmic space. Enzyme forms with less than 4 chains were retained in membranes of endoplasmic reticulum. Secreted underglycosylated enzyme forms are partially or completely inactive.  相似文献   

8.
Treatment of developing bean cotyledons with the inhibitor of N-glycosylation tunicamycin enhanced the synthesis of at least two polypeptides with molecular mass 78 kDa and 97 kDa. Pulse-chase experiments and subcellular fractionation indicated that these are endoplasmic reticulum (ER) residents. The 78 kDa protein is a major component of the ER protein fraction and, by N-terminal sequencing, was identified as a bean homolog of the mammalian 78 kDa glucose-regulated protein (GRP78). This is a molecular chaperone that is probably involved in the folding and oligomerization of several animal and yeast proteins in the ER. When newly synthesized storage glycoproteins phaseolin, phytohemagglutinin or alpha-amylase inhibitor were immunoprecipitated from an ER preparation of tunicamycin-treated tissue, the GRP78 homolog was always co-precipitated. Bound GRP78 homolog could be released by ATP treatment. These results suggest that, at least when glycosylation is inhibited, this protein plays a role in the early stages of the synthesis of vacuolar storage proteins.  相似文献   

9.
The N-glycosylation inhibitor tunicamycin triggers endoplasmic reticulum stress response and inhibits efficient protein secretion in eukaryotes. Using Arabidopsis suspension cells, we showed that the reduced secretion of mannose-binding lectin 1 (MBL1) protein by tunicamycin is accompanied by a significant decrease in MBL1 mRNA, suggesting that mRNA destabilization is the major cause of the inhibition of protein secretion in plants.  相似文献   

10.
11.
A number of studies suggest that early events in the maturation of amyloid precursor protein (APP) are important in determining its entry into one of several alternative processing pathways, one of which leads to the toxic protein beta-amyloid (Abeta). In pulse-labeled APP expressing CHO cells two proteolytic systems can degrade newly translated APP: the proteosome and a cysteine protease. When N-glycosylation was inhibited by tunicamycin, the former system is the dominant mechanism of APP degradation. Without tunicamycin present, the cysteine protease is operational: cysteine protease inhibitors completely inhibit APP turnover in cells in which the secretory pathway is interrupted with brefeldin A or when alpha-secretase and endosomal degradation are also pharmacologically blocked. APP immunoprecipitated from cells extracted under mild conditions and labeled in the presence of tunicamycin exhibited greater sensitivity to endoproteinase glu-C (V8) or lys-C than from cells without drug. The V8 fragment missing in tunicamyin treated cells encompassed the KPI inhibitor insertion site but was distinct from the site of N-glycosylation. It is concluded that a conformational change caused by interrupted N-glycosylation shunts newly translated APP into the proteasomal degradation pathway. Pulse-labeled and chased cells showed an additional V8 fragment that was not present in pulsed-labeled cells and was not due to glycosylation since it was also present in cells labeled in the presence of brefeldin. This latter result indicates that an additional, delayed conformational alteration occurs in the endoplasmic reticulum.  相似文献   

12.
The mouse myeloma tumor, MOPC-46, produces a kappa-type immunoglobulin light chain that may be isolated from the urine of tumor-bearing animals. This protein possesses a single carbohydrate side chain, attached by glycosylamine linkage to asparagine residue 28. When viable single cell suspensions of the tumor are incubated in vitro in minimum essential medium containing sodium pyruvate as a source of carbon and energy, the major protein synthesized and secreted corresponds to a nonglycosylated form of the kappa light chain. However, when glucose or mannose are substituted for sodium pyruvate as a source of carbon, the immunoglobulin light chain is synthesized and secreted in the fully glycosylated, native form. The dependence of normal glycosylation of the protein on the presence of either glucose or mannose in the medium is relatively specific for these compounds since substitution with either fructose, galactose, glycerol, ribose, or N-acetylglucosamine was ineffective. The nonglycosylated protein produced in the presence of sodium pyruvate was characterized as nonglycosylated MOPC-46 light chain by immunoprecipitation and gel electrophoresis. An identical nonglycosylated protein was produced by tumor cells in the presence of glucose when the incubation mixtures contained tunicamycin.  相似文献   

13.
Poliovirus protein 3A, only 87 amino acids in length, is a potent inhibitor of protein secretion in mammalian cells, blocking anterograde protein traffic from the endoplasmic reticulum (ER) to the Golgi complex. The function of viral protein 3A in blocking protein secretion is extremely sensitive to mutations near the N terminus of the protein. Deletion of the first 10 amino acids or insertion of a single amino acid between amino acids 15 and 16, a mutation that causes a cold-sensitive defect in poliovirus RNA replication, abrogates the inhibition of protein secretion although wild-type amounts of the mutant proteins are expressed. Immunofluorescence light microscopy and immunoelectron microscopy demonstrate that 3A protein, expressed in the absence of other viral proteins, colocalizes with membranes derived from the ER. The precise topology of 3A with respect to ER membranes is not known, but it is likely to be associated with the cytosolic surface of the ER. Although the glycosylation of 3A in translation extracts has been reported, we show that tunicamycin, under conditions in which glycosylation of cellular proteins is inhibited, has no effect on poliovirus growth. Therefore, glycosylation of 3A plays no functional role in the viral replicative cycle. Electron microscopy reveals that the ER dilates dramatically in the presence of 3A protein. The absence of accumulated vesicles and the swelling of the ER-derived membranes argues that ER-to-Golgi traffic is inhibited at the step of vesicle formation or budding from the ER.  相似文献   

14.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

15.
Tunicamycin, an inhibitor of N-acetylglucosaminylpyrophosphopolyisoprenol-dependent glycosylation, was used to study the effect of glycosylation on the synthesis, post-translational modification, secretion and function of the complement proteins that are associated with the major histocompatibility complex in humans, mice and guinea pigs. Tunicamycin blocked glycosylation of pro-C4, C2 and factor B and inhibited secretion of the corresponding native complement proteins synthesized by guinea-pig peritoneal macrophages in tissue culture. In addition, underglycosylated pro-C4 was more rapidly catabolized intracellularly than the corresponding fully glycosylated pro-complement protein. C4 protein secreted by cells incubated with tunicamycin had approximately the same specific biological activity as the protein obtained from control culture media, suggesting that carbohydrate is not required for its activity in immune haemolysis. Direct studies of carbohydrate incorporation and the tunicamycin effect suggested an unequal distribution of sugar among the C4 subunits, with maximal incorporation of carbohydrate into alpha-, and less into the beta-chain of the native protein.  相似文献   

16.
Endoplasmin is a molecular chaperone of the heat-shock protein 90 class located in the endoplasmic reticulum and its activity is poorly characterized in plants. We assessed the ability of endoplasmin to alleviate stress via its transient overexpression in tobacco protoplasts treated with tunicamycin, an inhibitor of glycosylation and inducer of the unfolded protein response (UPR). Endoplasmin supported the secretion of a model secretory protein but was less effective than BiP, the endoplasmic reticulum member of the heat-shock protein 70 family. Consistently, immunoprecipitation experiments with in vivo radioactively labelled proteins using an antiserum prepared against Arabidopsis endoplasmin showed that a much smaller number of newly synthesized polypeptides associated with endoplasmin than with BiP. Synthesis of endoplasmin was enhanced by UPR inducers in tobacco seedlings but not protoplasts. As BiP synthesis was induced in both systems, we conclude that the UPR acts differently, at least in part, on the expression of the two chaperones. Endoplasmin was not detectable in extracts of leaves and stems of the Arabidopsis endoplasmin T-DNA insertion mutant shepherd . However, the chaperone is present, albeit at low levels, in shepherd mutant callus, mature roots and tunicamycin-treated seedlings, demonstrating that the mutation is leaky. Reduced endoplasmin in the shepherd mutant has no effect on BiP protein levels in callus or mature roots, leaves and stems, but is compensated by increased BiP in seedlings. This increase occurs in proliferating rather than expanding leaf cells, indicating an important role for endoplasmin in proliferating plant tissues.  相似文献   

17.
The binding of four dinitrophenyl haptens to the mouse myeloma proteins MOPC 315 IgA (immunoglobulin A) and MOPC 460IgA was studied by resonance Raman spectroscopy. Isotopic substitution with 15N and 2H was used to assign features in the resonance Raman spectra of the free haptens. Changes in each of these features on binding to the proteins could then be attributed to interactions of the proteins' binding sites with either the p-NO2 or the o-NO2/amine regions of the haptens. The interactions between a given hapten and MOPC 315 IgA are often quite distinct from those between the same hapten and MOPC 460 IgA. Moreover, for both antibodies the nature of the R side chain in a Dnp-NHR (Dnp, 2,4-dinitrophenyl) compound appears to modify the interactions between the Dnp chromophore and the protein. Thus, with the haptens studied, there is no unique set of contacts between the Dnp group and the binding site. The contacts expected between epsilon-2,4-dinitrophenyl-L-lysine and the site on MOPC 315 IgA, on the basis of a recent model for this site [Dwek, Wain-Hobson, Dower, Gettins, Sutton, Perkins & Givol (1977) Nature (London) 266, 31--37] were not detected. However, the contacts between this hapten and the site on MOPC 460 IgA were closer to those predicted by the model for MOPC 315 IgA.  相似文献   

18.
Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.  相似文献   

19.
20.
The correct compartmentation of proteins to the endomembrane system, mitochondria, or chloroplasts requires an amino-terminal signal peptide. The major tuber protein of potato, patatin, has a signal peptide in common with many other plant storage proteins. When the putative signal peptide of patatin was fused to the bacterial reporter protein beta-glucuronidase, the fusion proteins were translocated to the endoplasmic reticulum in planta and in vitro. In addition, translocated beta-glucuronidase was modified by glycosylation, and the signal peptide was correctly processed. In the presence of an inhibitor of glycosylation, tunicamycin, the enzymatically active form of beta-glucuronidase was assembled in the endoplasmic reticulum. This is the first report of targeting a cytoplasmic protein to the endoplasmic reticulum of plants using a signal peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号