首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonatal administration of guanethidine-sulfate results in an alteration of the cell proliferative pattern of the small intestinal epithelium of the young adult rat. Sympathectomy with guanethidine has previously been shown to depress mitotic, labelling, and total cellular migration indices while increasing the generation cycle time (TC) of small intestinal crypt cells as measured by a stathmokinetic method. The present study showed that the G1, S and G2 phases of the crypt cell cycle are altered by sympathectomy, G1 accounting for most of the increase in TC. In addition, the percentage of [3H]-thymidine labelled crypt cells is reduced and the duration of crypt cell transit is lengthened by guanethidine-induced sympathectomy.  相似文献   

2.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

3.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

4.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

5.
The strong skin irritant cantharidin dissolved in benzene was applied to the back of hairless mice. Single cell suspensions of epidermal basal cells were obtained and flow microfluorometric measurements of cellular DNA content were made. Smears were made for autoradiography, and the [3H]TdR labelling index (LI) and mean grain count (MGC) were assessed up to 3 days after cantharidin application. Three successive peaks of cells with S phase DNA content accompanied by three LI peaks were observed. The first two peaks were follwed by peaks of cells in G2 phase, indicating that after the acute cell injury caused by cantharidin the cells traversed the cell cycle in partial synchrony through two subsequent cell cycles, each of 10–12 hr duration. During this phase of rapid proliferation the LI reached the proportion of cells in S phase, contrary to what is observed in untreated mouse epidermis, where the labelled cells contribute to about half the proportion of cells with S phase DNA content. The first two peaks of cells in S phase and LI coincided with an increased MGC, whereas the third peak was accompanied by a MGC significantly below control values. This indicates that this latter peak is due to a longer DNA synthesis time rather than to a partially synchronized and increased cell proliferation. The duration of the G1, S and G2 phases seems to be reduced initially in rapidly proliferating epidermis.  相似文献   

6.
7.
Summary Under hypoxia (10 and 5% partial oxygen tension) meristematic cells ofAllium cepa L. roots acquired new cycle kinetics, characterized by reduced but constant rates of root growth. Under these conditions, there was preferential lengthening of G1 and of the last third of the S period, S3. Since hyperoxygenation shortened S3 but not G1 in these cells, the high sensitivity of late replication to environmental oxygen is demonstrated. The preferential depression of the replication rate when those cells replicated the last third of their DNA was not associated with diminished cell size. Rather, the lower the oxygen level the larger the mean size of the cycling cells. Under anoxia (0% oxygen tension) the rate of growth slowed, accompanied by preferential accumulation of cells in G1. However, steady state kinetics of root growth was not achieved under these extreme conditions.Abbreviations Mean cell length - LI labelling index or frequency of cells with labelled nuclei after [3H]thymidine - G1, S, G2 pre-replicative, replicative, and post-replicative periods of the interphase of cycling cells - M mitosis  相似文献   

8.
Joe W.  Gray 《Cell proliferation》1976,9(6):499-516
A mathematical model is presented that permits simulation of a time sequence of DNA distributions with a single set of cell-cycle parameters. The method is particularly suited to the quantitative analysis of sets of sequential DNA distributions from perturbed cell populations. The model permits determination of the durations and associated dispersions of the phases of the cell cycle as well as the point in the cell cycle at which the perturbing agent exerts its effect. The mathematical details of the simulation technique are presented, and the technique is applied to the analysis of DNA distributions from perturbed cell populations. Three cell populations are modeled: CHO-line cells released from a block at the interface of the G1 and S-phases, 3T3 cells released from a G1-phase block produced by serum starvation, and S49 mouse lymphoma cells responding to a block in the G1-phase produced by N6,02′-dibutyryl adenosine 3′:5′-cyclic monophosphate (Bt2cAMP).  相似文献   

9.
A mathematical model for cell kinetics, based on a random walk, is developed. the model allows variations with time of the rates of passage of proliferating cells through the four phases of the mitotic cycle. Circadian variations in the mitotic and labelling indices of the Syrian hamster cheek pouch epithelium have previously been observed, and the random walk model has been used to simulate this phenomenon. Assuming that all basal cells are proliferative and that these cells leave the basal layer randomly throughout the mitotic cycle to become differentiated cells, it was found that the experimentally observed circadian rhythms of the mitotic and labelling indices could be reproduced in the model by postulating a circadian rhythm in the rate of passage of cells through the G1 and S phases only. Moreover, the growth activity of cells in both the G1 and S phases appears to reach a peak during the dark hours of the light-dark cycle, and to fall off rapidly in the early hours of daylight. the postulate of Møller, Larsen & Faber (1974) that injection of the animals with tritiated thymidine causes a shortening of the G2 phase duration has been qualitatively confirmed by using the random walk model to simulate the FLM and MI curves after injection with tritiated thymidine.  相似文献   

10.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

11.
Following a period of fasting, feeding a normal diet results in a burst of DNA synthesis in the crypts of the colonic epithelium. This is due largely to a prompt entry of cells, blocked in G1, into S. Peak levels of S cellularity exceed 4 times the fasting, and 2 times the normal fed, control values. Refeeding a low residue diet (soluble casein, glucose and corn oil) results in a return to control levels of proliferative activity, but no hyperplasia. However, in jejunum and ileum, refeeding is followed by a return to near control levels of proliferation with only a slight overshoot in S phase cellularity. During the fasting period, the ileal crypt proliferative compartment (Pc-zone) and total crypt cellularity decline significantly. These changes are accompanied by an increase in the total cycle time, due to an equivalent lengthening of the G1 and S phases. Following refeeding, there is a reduction in the cycle time and a gradual return to the control values for the Pc-zone size and cellularity. In the colon, fasting has no effect on the Pc-zone size or total crypt cellularity. There is an approximate doubling of the cycle time due solely to an increase in G1. Following refeeding there is an increase in the Pc-zone size and crypt cellularity and a marked shortening of the cycle time. Evidence that a G1 cycle blockade is induced in the colon by fasting is given by a lengthening of the G1 period and by stathmokinetic studies employing vincristine.  相似文献   

12.
Abstract. Chinese hamster ovary cells in vitro were pulse-labelled with bromodeoxyuridine (BrdUrd and were then allowed to progress through the cell cycle. Every half hour after labelling, cells were harvested and prepared for simultaneous flow cytometric determination of DNA content and incorporated BrdUrd, with the intercalating dye propidium iodide and with a monoclonal antibody against incorporated BrdUrd, respectively. The relative movement (RM), i.e. the relative mean DNA content of the moving cohort of BrdUrd-labelled cells in relation to that of G1 and G2 cells, was calculated. RM was then used to calculate DNA synthesis time (TS), at all post-labelling times (t). Since labelled cells in G2 and mitosis (M) in addition to S phase cells, are included in the cohort of moving labelled cells, and since the time of G2 and M (Tg2+M) phases is finite, a non-linear relationship exists between RM and post-labelling time. Because of this, the use of a linear formula in the calculation of TS yields results that are affected by t. We found that RM data can be corrected with regard to TG2+M resulting in the derivation of a non-linear TS formula. This non-linear TS formula gave results that were nearly independent of t. Moreover, windows were set in the mid DNA distributions for G1, S and G2+ M cells in the bivariate DNA v. BrdUrd cytograms, to estimate the fraction of BrdUrd-labelled cells in each window at every post-labelling time. Plots of the fraction of BrdUrd-labelled cells v. post-labelling time were then made for each window. TS obtained in this way was in agreement with TS obtained with the corrected RM method. In conclusion, we present a method to calculate Ts which theoretically first makes the determination of RM independent of TG2+M, and secondly compensates for the non-linear function of RM with post-labelling time caused by accumulation of BrdUrd-labelled cells in G2+ M.  相似文献   

13.
The duration of the cell cycle and its component phases in cell cultures of Haplopappus gracilis was estimated by means of pulse labelling with tritiated thymidine and subsequent autoradiographic techniques. The total duration of the mitotic cycle was found to be 22.0 hours. The average durations of the following component phases were: the synthetic period (S) 6.4 hours, the postsynthetic period (G2) 4.86 hours, prophase (P) 0.64 hours, metaphase (M) 0.40 hours, anaphase + early telophase (AT) 0.36 hours, the presynthetic period (G1) 9.34 hours. The results indicate that G1 and G2 are the phases, which are most prolonged in populations of cultivated cells when compared to the same phases in root lip cells from the same species.  相似文献   

14.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

15.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of growth of the murine JB-1 ascites tumour (i.e. 10 days after 2–5 × 106 cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with l-β-d-arabinofuranosylcytosine (Ara-C). The experimental work consisted of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6–8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Qt cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. These results indicate recycling of resting cells first with G2 and later with Gx DNA content, which contribute to the regrowth of the tumours.  相似文献   

16.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMW,) waves gave a mean Gis transit time of 21-2 hr, mean Gis+ S transit time of 270 hr, and mean Gis+ S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1–3 while the other variances remained unchanged. The estimated proliferative fraction was 0–24 after a single injection of isoprenaline, and 0–31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0–21 and 0–36 respectively.  相似文献   

17.
Analogs of cyclic adenosine monophosphate (cAMP) (N6benzoyl cAMP and N6monobutyryl cAMP) as well as agents that increased the intracellular level of cAMP (glucagon and isobutylmethylxanthine) inhibited the EGF-stimulated DNA replication of adult rat hepatocytes in primary culture independently of cell density. This inhibition was strongly potentiated by the glucocorticoid dexamethasone. The effect of cAMP (and dexamethasone) was not due to toxicity, because the inhibition was reversible and the cell ultrastructure preserved. cAMP acted by decreasing the rate of transition from G1- to S-phase, the duration of G2- and S-phase of the hepatocyte cell cycle being unaffected. DNA replication started in the extranucleolar compartment of the nucleus and ended in the nucleolar compartment as described earlier for cells grown in the absence of cAMP (O.K. Vintermyr and S.O. Døskeland, J. Cell. Physiol., 1987, 132:12-21). The action of cAMP was very rapid: significant inhibition of the transition was noted 2 hr after the addition of glucagon/IBMX and half-maximal inhibition after 4 hours. The determination of extranucleolarly labelled nuclei in cells pulse-labelled with [3H]thymidine allowed precise analysis of rapid changes in the probability of transition from G1- to S-phase. The extranucleolar labelling index could also be determined in cells continuously exposed to [3H]thymidine.  相似文献   

18.
The effect of a protein-free diet and starvation on the duration of the rat ileal crypt cell cycle time was studied by Quastler's technique of labeled mitoses. Rats were fed a protein-free diet for 3, 7, or 11 wk or were starved for 7 or 10 days. Progressive protein depletion resulted in a progressive lengthening of the cycle time (GT), due primarily to a lengthening of the synthetic phase (S) of the cycle. The presynthetic gap (G1) was the same as the control value after 3 wk and lower, but not significantly so, due to the large variability, after 11 wk. The duration of the postsynthetic gap (G2) plus mitotic phase (M) was not affected by the diet. As the dietary stress became more severe, the cell cycle also became more variable. Although the GT of rats starved for as long as 10 days was only slightly different from the control, the relative duration of the components of the cycle changed significantly. S and G2 were longer in the starved animals while G1 was of shorter duration.  相似文献   

19.
The process of continuous resynchronization with excess thymidine provides sufficient cell material for accurate chemical determination of DNA and RNA in HeLa S3 cells at hourly intervals during the cell cycle. Total DNA is constant during the non-S phase portion of the cell cycle but varies widely among cycles of synchronous growth. Total cellular RNA content increases linearly in the G1 phase and accelerates to a higher linear rate of accumulation, which remains constant during most of the S and G2 phases. The ratios of early and late cycle rates of RNA accumulation are not constant among cycles.  相似文献   

20.
Cell proliferation, differentiation and migration have been studied in the sebaceous glands of DBA-2 mice in the resting (telogen) phase of hair growth. Cells labelled by a single injection of tritiated thymidine start to leave the glands of adult male mice 5 days later. About 80% of the proliferative cells in the basal layer have a cell cycle time of 40 hr or less. In 18% of the proliferative cells G1 is at least 4 days long and 16% have a G2 phase longer than 17 hr. The S phase is about 7.5 hr long and cells spend at least 21 hr in the basal layer before migrating into the differentiating cell region. The glands of mature female and immature mice are smaller than those of the mature male. They have fewer, smaller cells and a much lower labelling index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号