首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ac-Induced Instability at the Xanthophyllic Locus of Tomato   总被引:4,自引:1,他引:3       下载免费PDF全文
P. W. Peterson  J. I. Yoder 《Genetics》1993,134(3):931-942
To detect genomic instability caused by Ac elements in transgenic tomatoes, we used the incompletely dominant mutation Xanthophyllic-1 (Xa-1) as a whole plant marker gene. Xa-1 is located on chromosome 10 and in the heterozygote state causes leaves to be yellow. Transgenic Ac-containing tomato plants which differed in the location and number of their Ac elements were crossed to Xa-1 tester lines and F(1) progeny were scored for aberrant somatic sectoring. Of 800 test and control F(1) progeny screened, only four plants had aberrantly high levels of somatic sectors. Three of the plants had twin sectors consisting of green tissue adjacent to white tissue, and the other had twin sectors comprised of green tissue adjacent to tissue more yellow than the heterozygote background. Sectoring was inherited and the two sectoring phenotypes mapped to opposite homologs of chromosome 10; the green/yellow sectoring phenotype mapped in coupling to Xa-1 while the green/white sectoring phenotype mapped in repulsion. The two sectoring phenotypes cosegregated with different single, non-rearranged Acs, and loss of these Acs from the genome corresponded to the loss of sectoring. Sectoring was still observed after transposition of the Ac to a new site which indicated that sectoring was not limited to a single locus. In both sectored lines, meiotic recombination of the sectoring Ac to the opposite homolog caused the phenotype to switch between the green/yellow and the green/white phenotypes. Thus the two different sectoring phenotypes arose from the same Ac-induced mechanism; the phenotype depended on which chromosome 10 homolog the Ac was on. We believe that the twin sectors resulted from chromosome breakage mediated by a single intact, transposition-competent Ac element.  相似文献   

2.
《Genomics》1999,55(2):194-201
Genomic imprinting is an epigenetic modification that can lead to parental-specific monoallelic expression of specific autosomal genes. While methylation of CpG dinucleotides is thought to be a strong candidate for this epigenetic modification, little is known about the establishment or maintenance of parental origin-specific methylation patterns. We have recently identified a portion of mouse chromosome 9 containing a paternally methylated region associated with a paternally expressed imprinted gene, Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1). This area of chromosome 9 also contains a short, direct tandem repeat in close proximity to a paternally methylatedNotI site 30 kb upstream ofRasgrf1.Short, direct tandem repeats have been found associated with other imprinted genes and may act as important regulatory structures. Here we demonstrate that two rodent species (MusandRattus) contain a similar direct repeat structure associated with a region of paternal-specific methylation. In both species, theRasgrf1gene shows paternal-specific monoallelic expression in neonatal brain. A more divergent rodent species (Peromyscus) appears to lack a similar repeat structure based on Southern Blot analysis.Peromyscusanimals show biallelic expression ofRasgrf1in neonatal brain. These results suggest that direct repeat elements may play an important role in the imprinting process.  相似文献   

3.
Neisseria meningitidis is a commensal and accidental pathogen exclusively of humans. Although the production of polysaccharide capsules is considered to be essential for meningococcal virulence, there have been reports of constitutively unencapsulated strains causing invasive meningococcal disease (IMD). Here we report the genome sequence of a capsule null locus (cnl) strain of sequence type 198 (ST-198), which is found in half of the reported cases of IMD caused by cnl meningococcal strains.  相似文献   

4.
5.
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Rüdiger Cerff]  相似文献   

6.
M. R. Mautino  J. L. Barra    A. L. Rosa 《Genetics》1996,142(3):789-800
Intense biochemical and genetic research on the eth-1(r) mutant of Neurospora crassa suggested that this locus might encode S-adenosylmethionine synthetase (S-Adomet synthetase). We have used protoplast transformation and phenotypic rescue of a thermosensitive phenotype associated with the eth-1(r) mutation to clone the locus. Nucleotide sequence analysis demonstrated that it encodes S-Adomet synthetase. Homology analyses of prokaryotic, fungal and higher eukaryotic S-Adomet synthetase polypeptide sequences show a remarkable evolutionary conservation of the enzyme. N. crassa strains carrying S-Adomet synthetase coding sequences fused to a strong heterologous promoter were constructed to assess the phenotypic consequences of in vivo S-Adomet synthetase overexpression. Studies of growth rates and microscopic examination of vegetative development revealed that normal growth and morphogenesis take place in N. crassa even at abnormally high levels of cellular S-Adomet. The degree of cytosine methylation of a naturally methylated genomic region was dependent on the cellular levels of S-Adomet. We conclude that variation in S-Adomet levels in N. crassa cells, which in addition to the status of genomic DNA methylation could modify the flux of other S-Adomet-dependent metabolic pathways, does not affect growth rate or morphogenesis.  相似文献   

7.
R. M. Kliman  J. Hey 《Genetics》1993,133(2):375-387
A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus.  相似文献   

8.
Cohen A  Plant AL  Moses MS  Bray EA 《Plant physiology》1991,97(4):1367-1374
The cDNAs, pLE4 and pLE25, represent mRNAs that accumulate in response to water deficit and elevated levels of endogenous abscisic acid in detached leaves of drought-stressed tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) (A Cohen, EA Bray [1990] Planta 182: 27-33). DNA sequence analysis of pLE4 and pLE25 showed that the deduced polypeptides were 13.9 and 9.3 kilodaltons, respectively. Each polypeptide was hydrophilic, cysteine- and tryptophan-free, and found to be similar to previously identified proteins that accumulate during the late stages of embryogenesis. pLE4 and pLE25 mRNA accumulated in a similar organ-specific pattern in response to specific abiotic stresses. Yet, expression patterns of the corresponding genes in response to developmental cues were not similar. pLE25 mRNA accumulated to much higher levels in developing seeds than in drought-stressed vegetative organs. pLE4 mRNA accumulated predominantly in drought-stressed leaves. The similarities and differences in the accumulation characteristics of these two mRNAs indicates that more than one mechanism exists for the regulation of their corresponding genes.  相似文献   

9.
The rpoN region of Rhizobium etli was isolated by using the Bradyrhizobium japonicum rpoN1 gene as a probe. Nucleotide sequence analysis of a 5,600-bp DNA fragment of this region revealed the presence of four complete open reading frames (ORFs), ORF258, rpoN, ORF191, and ptsN, coding for proteins of 258, 520, 191, and 154 amino acids, respectively. The gene product of ORF258 is homologous to members of the ATP-binding cassette-type permeases. ORF191 and ptsN are homologous to conserved ORFs found downstream from rpoN genes in other bacterial species. Unlike in most other microorganisms, rpoN and ORF191 are separated by approximately 1.6 kb. The R. etli rpoN gene was shown to control in free-living conditions the production of melanin, the activation of nifH, and the metabolism of C4-dicarboxylic acids and several nitrogen sources (ammonium, nitrate, alanine, and serine). Expression of the rpoN gene was negatively autoregulated and occurred independently of the nitrogen source. Inactivation of the ptsN gene resulted in a decrease of melanin synthesis and nifH expression. In a search for additional genes controlling the synthesis of melanin, an R. etli mutant carrying a Tn5 insertion in ptsA, a gene homologous to the Escherichia coli gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system, was obtained. The R. etli ptsA mutant also displayed reduced expression of nifH. The ptsN and ptsA mutants also displayed increased sensitivity to the toxic effects of malate and succinate. Growth of both mutants was inhibited by these C4-dicarboxylates at 20 mM at pH 7.0, while wild-type cells grow normally under these conditions. The effect of malate occurred independently of the nitrogen source used. Growth inhibition was decreased by lowering the pH of the growth medium. These results suggest that ptsN and ptsA are part of the same regulatory cascade, the inactivation of which renders the cells sensitive to toxic effects of elevated concentrations of malate or succinate.  相似文献   

10.
Analysis of the Cut Locus of DROSOPHILA MELANOGASTER   总被引:2,自引:2,他引:0       下载免费PDF全文
Johnson TK  Judd BH 《Genetics》1979,92(2):485-502
Mutants of the cut (ct) locus can be divided into two classes: viable and lethal. Most of the viable alleles are characterized by varying degrees of scalloping and notching of the wings. One mutant, kinked femur, exhibits kinking of the femurs and failure of wing expansion, but no other changes in wing structure. In heterozygous combination with the other viable alleles, it exhibits complete complementation, but it fails to complement with lethal ct alleles with respect to its viable phenotype. Similarly, all of the other viable ct alleles express a mutant wing phenotype when heterozygous with lethal ct alleles.-Mapping experiments indicate that the lethal alleles, which comprise the majority of all ct mutations recovered, are confined to a small region at the right end of the locus. That this restriction is real and not an artifact imposed by the limited number of lethal mutations mapped in the locus is supported by an examination of the mutant ct(JC20), a presumptive deficiency for the left-most third of the locus. Despite its behavior as a deletion, ct(JC20) is viable, though mutant, in combination with the lethal alleles. The restriction of the noncomplementary lethals to a small part of the locus, distinct from the other ct mutants, suggests a polarity that may define a segment that functions only in cis within the complex.-Based on the comparison of the data with the prediction of several models, we suggest that the left portion of the locus, which contains the viable alleles, defines a regulatory region controlling the expression of the locus, while the segment encoding a polypeptide product is at the right end and only it is capable of mutating to a lethal state.  相似文献   

11.
Two virus isolates, designated S1 and TL, were obtained from tomato and camellia root in China, respectively, and their host ranges, symptomatology, serological reactions and complete nucleotide sequences were determined. Isolate TL systemically infected Chenopodium amaranticolor causing leaf chlorosis, but the isolate S1 induced only local necrotic lesions. The complete nucleotide sequences of S1 and TL were determined and consisted of 6384 and 6383 nucleotides (Genbank accessions AJ132845 and AJ417701 ), respectively. Sequence analysis revealed that both isolates have the highest nucleotide sequence identity (over 92%) with Tomato mosaic virus (ToMV), but less (80%) with other tobamoviruses. Phylogenetic analyses based on the amino acid sequences of 30‐kD and 17.5‐kD proteins also indicated that both the isolates form a cluster with the isolates of ToMV. These data suggest that S1 and TL are isolates of ToMV. The possible reasons that TL infected C. amaranticolor systemically but S1 induced only local necrotic lesions are discussed.  相似文献   

12.
Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron ho- meostasis in strategy I plants. LeFROI is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1MM, LeFRO1Ailsa and LeFRO1Monita) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1AiISa 〉 LeFRO1MM 〉 LeFRO1M~nita). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue lie at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.  相似文献   

13.
14.
Recent evidence suggests that gamete recognition proteins may be subjected to directed evolutionary pressure that enhances sequence variability. We evaluated whether diversity enhancing selection is operating on a marine invertebrate fertilization protein by examining the intraspecific DNA sequence variation of a 273-base pair region located at the 5′ end of the sperm bindin locus in 134 adult red sea urchins (Strongylocentrotus franciscanus). Bindin is a sperm recognition protein that mediates species-specific gamete interactions in sea urchins. The region of the bindin locus examined was found to be polymorphic with 14 alleles. Mean pairwise comparison of the 14 alleles indicates moderate sequence diversity (p-distance = 1.06). No evidence of diversity enhancing selection was found. It was not possible to reject the null hypothesis that the sequence variation observed in S. franciscanus bindin is a result of neutral evolution. Statistical evaluation of expected proportions of replacement and silent nucleotide substitutions, observed versus expected proportions of radical replacement substitutions, and conformance to the McDonald and Kreitman test of neutral evolution all indicate that random mutation followed by genetic drift created the polymorphisms observed in bindin. Observed frequencies were also highly similar to results expected for a neutrally evolving locus, suggesting that the polymorphism observed in the 5′ region of S. franciscanus bindin is a result of neutral evolution. Received: 19 June 1998 / Accepted: 2 August 2000  相似文献   

15.
We determined the nucleotide sequence of a 4.6-kb EcoRI fragment containing 70% of the rosy locus. In combination with information on the 5' sequence, the gene has been sequenced in entirety. rosy cDNAs have been isolated and intron/exon boundaries have been determined. We find an open reading frame which spans four exons and would encode a protein of 1335 amino acids. The molecular weight of the encoded protein (xanthine dehydrogenase), based on the amino acid translation, is 146,898 daltons which agrees well with earlier biophysical estimates. Characteristics of the protein are discussed.  相似文献   

16.
17.
Most ofthe human Not I linking clones identified to date areconsidered to be derived from CpG islands because ofthe recognitionsequence of this enzyme, and CpG islands have been reportedto be located around the 5' regions of genes. As a pilot study,we determined the complete nucleotide sequence (41,924 bp) ofa human cosmid clone (LL21NC02Q7A10) containing the marker D21S246originating from a Not I linking clone. As a result of sequenceanalysis, we successfully mapped and revealed the genomic genestructure for KIAA0002 previously reported as a cDNA clone.This gene consists of 15 exons and was shown to exist at theD21S246 locus on human chromosome 21q21.3–q22.1. Theseresults demonstrated that genomic marker-anchored DNA sequencingis a useful approach for the human genome project.  相似文献   

18.
19.
人类白细胞抗原(Human Leukocyte Antigen,HLA)基因复合物位于6p21.3,有220多个不同的功能基因,是人类基因组最复杂的遗传多态系统。HLA等位基因的变异在医学、法医学、人类学等领域具有重要的意义。自从1964年以来,HLA分型一直采用经典的微量淋巴细胞毒实验,但该方法是血清学水平的分,不能识别很多特异性的等位基因,而且高质量的抗体也不易获得。从20世纪90年代起,在国家自然科学基金的资助下,首先开展HLAⅡ类位点基因分研究及大规模群体多态性调查,所获得的中国主要民族基因数据已应用于多个领域。相比之下,HLAⅠ类基因数量更丰富,包含了A、B、C、E、F、G和假基因H、J、K、L等10个位点;基因分子结构更复杂,更具多态性。因此,HLAⅠ类DNA分型比HLAⅡ类分型及行多困难。直至目前中国人群HLA-A基因座基因多态性和分布频率的研究尚未充分进行。而任何DNA标记用于遗传分析、法医鉴定等领域之前,必须先进行群体调查,建立不同民族基因数据库,这是不可逾越的基础工作。鉴于此,采用灵敏而非同位素污染的PCR-SSOP基因分型技术,对165个汉族和162个维吾尔族个体的HLA-A基因座多态性进行调查。结果在汉族群体中发现22种等位基因,频率最高的是HLA-A*1101(19.7%),其次是*201(12.72%);在维族群体中发现22种等位基因,频率最高的是*2407(17.90%),等位基因*0101、*0201和*3301的频率均大于10%;HLA-A*0203、*0205、*0302、*2403和*3302仅在汉族群体中检出;HLA-A*0205、*0211、*2301、*2502、*68012和*6802仅在维族群体中检出。按照Hardy-Weinberg平衡定律检验,两个民族各等位基因型频率的预期值与实际观察值相吻合(P>0.05),证明了所获得汉族、维吾尔族HLA-A位点基因频率具有可靠性;同时也表明各等位基因的遗传特征符合符合孟德尔规律。经计算机统计分析,汉族群体HLA-A基因座杂合度(Heterozygosity,H)、个体识别率(Discrimination Power,DP)和非父排排率(Proba-bility of Paternity Exclusion,EPP)分别为0.9029、0.9776和0.8592;维族群体H、DP和EEP分别为0.9063、0.9379和0.7885。和其他遗传标记(如VNTR、STR、SNP)的单一位点相比,HLA-A具有高度的杂合率、个体识别率和非父排除率。因此,HLA-A等位基因在法医个体识别、亲权鉴定、基因诊断、人类学等领域具有重要的应用价值。  相似文献   

20.
蛋白质序列复杂性简化与非比对序列分析   总被引:1,自引:0,他引:1  
非比对序列分析是最新发展的一种序列分析方法,具有计算效率高并适用于分析低相似性的序列,已成功用于DNA的序列分析中.但是由于蛋白质序列的复杂性,非比对序列分析对于蛋白质序列分析的准确度却不高.用将20种天然氨基酸残基归类的方法,简化了蛋白质序列的复杂性,并运用到对蛋白质的非比对序列分析中,有效地提高了序列分析的准确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号