首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloids are highly organized protein aggregates that arise from inappropriately folded versions of proteins or polypeptides under both physiological as well as simulated ambiences. Once thought to be irreversible assemblies, amyloids have begun to expose their more dynamic and reversible attributes depending upon the intrinsic properties of the precursor protein/peptide and experimental conditions such as temperature, pressure, structural modifications in proteins, or presence of chemicals in the reaction mixture. It has been repeatedly proposed that amyloids undergo transformation to the bioactive peptide/protein forms under specific conditions. In the present study, amyloids assembled from the model protein ovalbumin (OVA) were found to release the precursor protein in a slow and steady manner over an extended time period. Interestingly, the released OVA from amyloid depot was found to exhibit biophysical characteristics of native protein and reacted with native-OVA specific monoclonal as well as polyclonal antibodies. Moreover, antibodies generated upon immunization of OVA amyloidal aggregates or fibrils were found to recognize the native form of OVA. The study suggests that amyloids may act as depots for the native form of the protein and therefore can be exploited as vaccine candidates, where slow antigen release over extended time periods is a pre-requisite for the development of desired immune response.  相似文献   

2.
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids.  相似文献   

3.
K. S. Antonets 《朊病毒》2017,11(5):300-312
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.  相似文献   

4.
Amyloids are fibrous protein aggregates that arise via polymerization of proteins with their concurrent conformational rearrangement and the formation of a specific cross-β structure. Amyloids are of particular interest as a cause of a vast group of human and animal diseases called amyloidoses. Some of these diseases are caused by prions, a specific type of amyloids, and are transmissible. Apart from mammals, prion amyloids are described in lower eukaryotes, where they act as nonchromosomal genetic determinants. Although amyloids are usually associated with pathologies in humans and animals, the increasing number of findings suggests that the acquisition of an amyloid or prion form by a protein is of biological significance in some cases. The review summarizes the data on the biological significance of prion and nonprion amyloids in a wide range of species from bacteria to mammals.  相似文献   

5.
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.  相似文献   

6.
Amyloids are primarily known for their roles in neurodegenerative disorders, as well as in systemic diseases like diabetes. Evolutionary forces tend to maintain a healthy set of heritable characteristics, while eliminating toxic or unfavourable elements; but amyloids seem to represent an exception to this fundamental concept. In addition to their presence in mammals, amyloids also persist in the proteome of many lower organisms that may be linked with possible roles in survival, which are still unexplored. Herein, we address some unanswered questions regarding amyloids: are these well‐structured proteinaceous aggregates a by‐product of inefficient folding events, or have they been retained in our protein repertoire for as yet unknown functional roles; and how do protein misfolding and associated disorders originate, despite the presence of protein quality‐control systems inside the cells? This review aims to extend our current understanding about the multifaceted useful properties of amyloids and their functional interactions with other molecular pathways in various species; this may provide new insights to identify novel therapeutic strategies for ageing and neurodegenerative diseases.  相似文献   

7.
Amyloids are protein fibrils adopting structure of cross-beta spine exhibiting either pathogenic or functionally significant properties. In prokaryotes, there are several groups of functional amyloids; however, all of them were identified by specialized approaches that do not reveal all cellular amyloids. Here, using our previously developed PSIA (Proteomic Screening and Identification of Amyloids) approach, we have conducted a proteomic screening for candidates for novel amyloid-forming proteins in Escherichia coli as one of the most important model organisms and biotechnological objects. As a result, we identified 61 proteins in fractions resistant to treatment with ionic detergents. We found that a fraction of proteins bearing potentially amyloidogenic regions predicted by bioinformatics algorithms was 3-5-fold more abundant among the identified proteins compared to those observed in the entire E. coli proteome. Almost all identified proteins contained potentially amyloidogenic regions, and four of them (BcsC, MukB, YfbK, and YghJ) have asparagineand glutamine-rich regions underlying a crucial feature of many known amyloids. In this study, we demonstrate for the first time that at the proteome level there is a correlation between experimentally demonstrated detergent-resistance of proteins and potentially amyloidogenic regions predicted by bioinformatics approaches. The data obtained enable further comprehensive characterization of entirety of amyloids (or amyloidome) in bacterial cells.  相似文献   

8.
Biology of amyloid: structure, function, and regulation   总被引:1,自引:0,他引:1  
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.  相似文献   

9.
Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled Aβ (TMR-Aβ) to characterize its stability and heterogeneity. Disaggregation of TMR-Aβ amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-Aβ amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.  相似文献   

10.
Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.  相似文献   

11.
Amyloids, initially associated with certain degenerative diseases, and recently with the prions and prion-based inheritance in yeasts, are linearly-ordered beta-sheet-rich protein aggregates, presently thought to represent a rather common generic trait of proteins as polymers. Regardless of genetic origins and properties of precursor protein molecules, amyloids share many physicochemical properties, including the linear fibrillar morphology. Here, we show that under high hydrostatic pressure insulin forms amyloids of a unique circular morphology. Despite a degree of size-distribution, the smallest forms of the approximate radius of 340-420 nm are most abundant among the ring-shaped structures. The circular amyloid is accompanied by bent 20-100 nm long fibrils. The pressure-enhancement of a ring-like supramolecular fold suggests an anisotropic distribution of void volumes in regular amyloid fibres. While the ability of high pressure to evoke such drastic perturbations on an amyloidogenic pathway may help tune conformation of amyloid templates (e.g. inducing the PrP(Sc)-type infectivity in amyloids grown in vitro from recombinant PrP), the very finding raises new questions concerning possible consequences for high-pressure food processing.  相似文献   

12.
13.
Biochemistry (Moscow) - Amyloids are protein aggregates with the cross-β structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially...  相似文献   

14.
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed “the amyloid-world” hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.  相似文献   

15.
BackgroundAmyloids are highly ordered polypeptide aggregates stabilized by a beta-sheet structural core. Though classically associated to pathology, reports on novel functional roles of these proteins have increasingly emerged in the past decade. Moreover, the recent discovery that amyloids formed with rationally designed small peptides can exhibit catalytic reactivity has opened up new opportunities in both biology and biotechnology. The observed activities typically require the binding of divalent metals, giving rise to active metal-amyloid complexes.MethodsPeptide (SDIDVFI) was aggregated in vitro. The structure of the self-assembled species was analyzed using fluorescence, transmission electron microscopy, circular dichroism and computational modeling. A kinetic characterization of the emerging catalytic activity was performed.ResultsThe peptide self-assembled into canonical amyloids that exhibited catalytic activity towards hydrolysis of the phosphoanhydride bonds of adenosine triphosphate (ATP), partially mimicking an ATPase-like enzyme. Both amyloid formation and activity are shown to depend on manganese (Mn2+) binding. The activity was not restricted to ATP but also affected all other ribonucleotides (GTP, CTP and UTP). Peptides carrying a single aspartate exhibited a similar activity.ConclusionsThe phosphoanhydride bonds appear as the main specificity target of the Mn2+-amyloid complex. A single aspartate per peptide is sufficient to enable the hydrolytic activity.General significanceCatalytic amyloids are shown for the first time to catalyze the hydrolysis of all four ribonucleotides. Our results should contribute towards understanding the biological implications of amyloid-mediated reactivity as well as in the design of future catalytic amyloids for biotechnological applications.  相似文献   

16.
Amyloids are filamentous protein structures approximately 10 nm wide and 0.1-10 mum long that share a structural motif, the cross-beta structure. These fibrils are usually associated with degenerative diseases in mammals. However, recent research has shown that these proteins are also expressed on bacterial and fungal cell surfaces. Microbial amyloids are important in mediating mechanical invasion of abiotic and biotic substrates. In animal hosts, evidence indicates that these protein structures also contribute to colonization by activating host proteases that are involved in haemostasis, inflammation and remodelling of the extracellular matrix. Activation of proteases by amyloids is also implicated in modulating blood coagulation, resulting in potentially life-threatening complications.  相似文献   

17.
The discovery of intrinsic disorderness in proteins and peptide regions has given a new and useful insight into the working of biological systems. Due to enormous plasticity and heterogeneity, intrinsically disordered proteins or regions in proteins can perform myriad of functions. The flexibility in disordered proteins allows them to undergo conformation transition to form homopolymers of proteins called amyloids. Amyloids are highly structured protein aggregates associated with many neurodegenerative diseases. However, amyloids have gained much appreciation in recent years due to their functional roles. A functional amyloid fiber called curli is assembled on the bacterial cell surface as a part of the extracellular matrix during biofilm formation. The extracellular matrix that encases cells in a biofilm protects the cells and provides resistance against many environmental stresses. Several of the Csg (curli specific genes) proteins that are required for curli amyloid assembly are predicted to be intrinsically disordered. Therefore, curli amyloid formation is highly orchestrated so that these intrinsically disordered proteins do not inappropriately aggregate at the wrong time or place. The curli proteins are compartmentalized and there are chaperone-like proteins that prevent inappropriate aggregation and allow the controlled assembly of curli amyloids. Here we review the biogenesis of curli amyloids and the role that intrinsically disordered proteins play in the process.  相似文献   

18.
Amyloids are proteinaceous aggregates related to the so‐called conformational diseases, such as Alzheimer's and prion diseases. The cytotoxicity of amyloids may be related to the interaction of the amiloidogenic peptides or proteins with the cell membrane. In order to gain information on the physico‐chemical effects of amyloids on membranes, we have studied the interaction of the human prion amyloidogenic fragment PrP 185–206 with negatively charged model membranes. The results show that the peptide causes the destabilization of the membrane, making it permeable to potassium ions and to charged organic compounds. This effect correlates with the interaction of the peptide with the membrane, causing a variation in the magnitude of the electrostatic surface and dipole membrane potentials. This effect on the electrostatic properties of the membranes may help explaining the observed permeability: a neutralization of the surface negative charge and a decrease of the inside‐positive dipole potential would facilitate the translocation of positive ions. The structural analysis of the peptide in the presence of model membranes reveals that it adopts a predominantly unordered structure without any signs of amyloid formation. The results may be relevant in relation to the recently described cell toxic capacity of the peptide. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds.  相似文献   

20.
Amyloids and prions represent aggregates of misfolded proteins, which consist of protein polymer fibrils with cross-beta sheet structure. Understanding of their occurrence and role is developing rapidly. Initially, they were found associated with mammalian diseases, mainly of neurodegenerative nature. Now they are known to relate to a range of non-disease phenomena in different species from mammals to lower eukaryotes. Uncovering new prion- and amyloid-related processes may be helped greatly by a procedure for purification of amyloid polymers. Studies of growth and propagation of these polymers require methods for determination of their size. Here, we describe such methods. They rely on the treatment with cold SDS or Sarcosyl detergents, which do not dissolve amyloids, but solubilize almost all non-amyloid complexes and associations between amyloid fibers. This allows purifying amyloids by centrifugation in the presence of these detergents. The size of amyloid polymers may be analyzed by electrophoresis in agarose gels containing SDS. Two procedures are described for determining the proportion between polymers and monomers of a particular protein using polyacrylamide gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号