首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cook AM  Evans SA  Jones JG 《Biorheology》1998,35(2):119-130
A filtrometer is described for measuring the flow of fluids through microfilters. The flow of Newtonian fluids through the filters can be predicted from the diameter, length and number of pores. There are no physical artefacts such as turbulent flow or a significant lag period before steady-state flow is achieved. The instrument has been used as a viscometer and has been used to record and analyse the flow of undiluted blood through 5 microns polycarbonate filters. The calculated viscosity of Newtonian fluids agrees well with those measured by a more conventional viscometer (Ostwald). Flow profiles of blood have been analysed to give both the numbers and the flow properties of a small population of slow leukocytes which equate numerically with the monocytes. They are subdivided into three distinct sub-populations, according to their rheological properties, and these are termed SL1, SL2 and PB. The concentration of these cells, in blood, are 0.12 +/- 0.02 x 10(6) ml-1, 0.11 +/- 0.02 x 10(6) ml-1, 0.09 +/- 0.02 x 10(6) ml-1 in young females aged about 25 years. The transit time of these cells, through 5 microns pores, is 34.8 +/- 1.4 s, 147.5 +/- 2.5 s and > 300 s, respectively. Analysis of blood from older men (53-79 years) gives essentially the same results although the concentration of SL1 is slightly higher at 0.19 +/- 0.09 x 10(6) ml-1.  相似文献   

2.
The rheology of blood is characterized by shear thinning, viscoelasticity, and thixotropy. Its rheological evaluation is usually accomplished using a torque balance technique during rotational viscometry. Because a stable torque balance does not develop instantly, studies of thixotropy and viscoelasticity of blood have usually been carried out only at low shear rate where their development is slow enough to be monitored accurately. The torque balance technique may be converted from static to dynamic by incorporating the rate of change of sensing system angular momentum. We have modified our Couette viscometer, adding a computer-controlled stepping motor and a second digital voltmeter. The latter is used to determine the angular position of the sensing system every 25 or 50 msec. The new approach allows rapid observation of the development and disappearance of shear stress, enabling us to examine the transient behavior of blood at moderate shear rate (1 to 100 inverse seconds). The transient flow behavior of blood at moderate shear rate is most easily compared directly with the behavior of Newtonian fluids. We present information about the response of our system using a torque balance observation rate of 20 per second. Blood's viscoelasticity is observed to fall substantially as shear rate rises, while its thixotropic transient excess stress rises steadily with increasing shear rate.  相似文献   

3.
The purpose of this study was to test the hypothesis that the rise in colonic temperature (Tc) during nonexertional heat stress is exaggerated in senescent (SEN, 24 mo, n = 12) vs. mature (MAT, 12 mo, n = 15) conscious unrestrained Fischer 344 rats. On 2 separate days (48 h apart) each SEN and MAT animal was exposed to an ambient temperature (Ta) of 42 degrees C (relative humidity 20%) until a Tc of 41 degrees C was attained and then cooled at a Ta of 26 degrees C until Tc returned to the initial control level. Control Tc was similar in the two groups for both trials. The rate of Tc change during heating was 63% greater (0.070 +/- 0.005 vs. 0.043 +/- 0.004 degrees C/min, P less than 0.05) and the time to 41 degrees C reduced by 36% (54 +/- 6 vs. 85 +/- 10 min, P less than 0.05) in MAT vs. SEN animals during the first exposure, although the cooling rate was slower in the MAT (0.048 +/- 0.004 degrees C/min) vs. SEN (0.062 +/- 0.006 degrees C/min) animals (P less than 0.05). The heating rate was unchanged in MAT animals between trials 1 and 2. However, SEN animals had a 95% increase in heating rate in trial 2 compared with trial 1 (P less than 0.05), and the corresponding time to 41 degrees C was decreased by 44% (P less than 0.05). As a result, rate of heating and time to 41 degrees C were similar in the two groups during trial 2. The cooling rate was similar between trials within each group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The objective of this study was to determine whether rheological properties of the vaginal fluid at the time of insemination could be used as an indicator of potential fertility in dairy cows. Thixotropy and flow behavior were evaluated. Vaginal samples were collected from 347 cows at the time of insemination, within a 12- to 24-h interval after the onset of a natural estrus. Logistic regression analysis showed no significant effects of thixotropy measurements on the pregnancy rate, while flow behavior and the index of consistency (K) had a significant effect. The decrease in the consistency index (K) was related to the increase in the pregnancy rate (odds ratio = 0.99; P = 0.014), and the risk of nonpregnancy was higher (odds ratio = 0.46; P = 0.024) in cows in which vaginal fluid had a Newtonian behavior. Non-Newtonian behavior was recorded in 294 samples (85%) while 53 behaved as Newtonian fluids. For samples from all cows, the mean value of the consistency index was 310 +/- 28.2 milliPascals.second(n) (x +/- SEM) and ranged from 0 to 3881 milliPascals.second(n). In Newtonian samples, the consistency index mean was 2.6 +/- 0.6 milliPascals.second(n) and 367.6 +/- 30.4 milliPascals.second(n) for non-Newtonian samples. Of the 347 cows, 131 (38%) became pregnant. For flow behavior classification, 15 (28.3%) cows in which samples had Newtonian behavior and 116 (39.5%) cows with non-Newtonian samples became pregnant. Therefore, the highest probability of pregnancy was shown by cows in which samples had non-Newtonian behavior and the lowest consistency index values. Our data suggest that flow behavior measurements of the vaginal fluid at the time of insemination may be an indicator of potential fertility in cattle.  相似文献   

5.
The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within AAA.  相似文献   

6.
The purpose of this study was to determine the systemic hemodynamic mechanism(s) underlying the pressor response to nonexertional heat stress in the unrestrained conscious rat. After a 60-min control period [ambient temperature (Ta) 24 degrees C], male Sprague-Dawley rats (260-340 g) were exposed to a Ta of 42 degrees C until a colonic temperature (Tc) of 41 degrees C was attained. As Tc rose from control levels (38.1 +/- 0.1 degrees C) to 41 degrees C, mean arterial blood pressure (carotid artery catheter, n = 33) increased from 124 +/- 2 to 151 +/- 2 mmHg (P less than 0.05). During this period, heart rate increased (395 +/- 5 to 430 +/- 6 beats/min, P less than 0.05) and stroke volume remained unchanged. As a result, ascending aorta blood flow velocity (Doppler flow probe, n = 8), used as an index of cardiac output, did not change from control levels during heating, but there was a progressive Tc-dependent increase in systemic vascular resistance (+30% at end heating, P less than 0.05). This systemic vasoconstrictor response was associated with decreases in blood flow (-31 +/- 9 and -21 +/- 5%) and increases in vascular resistance (94 +/- 16 and 53 +/- 8%; all P less than 0.05) in the superior mesenteric and renal arteries (n = 8 each) and increases in plasma norepinephrine (303 +/- 37 to 1,237 +/- 262 pg/ml) and epinephrine (148 +/- 28 to 708 +/- 145 pg/ml) concentrations (n = 12, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
S Nandy  J M Tarbell 《Biorheology》1987,24(5):483-500
Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.  相似文献   

8.
There is limited information about whether preexisting fetal hypoxia alters hemodynamic responses and changes in T/QRS ratio and ST waveform shape during subsequent severe asphyxia. Chronically instrumented near-term sheep fetuses (124 +/- 1 days) were identified as either normoxic Pa(O(2)) > 17 mmHg (n = 9) or hypoxic Pa(O(2)) < or = 17 mmHg (n = 5); then they received complete occlusion of the umbilical cord for 15 min. Umbilical cord occlusion led to sustained bradycardia, severe acidosis, and transient hypertension followed by profound hypotension in both groups. Preexisting hypoxia did not affect changes in mean arterial blood pressure but was associated with a more rapid initial fall in femoral blood flow and vascular conductance and with transiently higher fetal heart rate at 2 min and from 9 to 11 min of occlusion compared with previously normoxic fetuses. Occlusion was associated with a significant but transient rise in T/QRS ratio; preexisting hypoxia was associated with a significant delay in this rise (maxima 3.7 +/- 0.4 vs. 6.2 +/- 0.5 min), but a slower rate of fall. There was a similar elevation in troponin-T levels 6 h after occlusion in the two groups [median (range) 0.43 (0.08, 1.32) vs. 0.55 (0.16, 2.32) microg/l, not significant]. In conclusion, mild preexisting hypoxia in normally grown singleton fetal sheep is associated with more rapid centralization of circulation after umbilical cord occlusion and delayed elevation of the ST waveform and slower fall, suggesting that chronic hypoxia alters myocardial dynamics during asphyxia.  相似文献   

9.
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.  相似文献   

10.
P Chaturani  S Narasimman 《Biorheology》1988,25(1-2):199-207
Mathematical models for blood flow in cone-plate viscometer have been considered, by assuming blood as a Casson/Herschel-Bulkley fluid. Three different cases have been analyzed (i) when there is no shearing, (ii) partial shearing and (iii) full shearing. The relationships between the angular velocity and torque have been obtained for the above three cases. By assuming total shearing, the analytical expression for apparent viscosity has been obtained. Variation of apparent viscosity with yield stress, angular velocity, Casson co-efficient of viscosity, consistency index and flow behaviour index has been computed. It is observed that as the angular velocity increases, the apparent viscosity decreases for both fluids. Further, it is found that as the cone angle increases, the apparent viscosity increases. This behaviour of apparent viscosity in cone-plate viscometer is interesting and unexpected and is being reported first time.  相似文献   

11.
Choi HW  Barakat AI 《Biorheology》2005,42(6):493-509
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.  相似文献   

12.
P Chaturani  D Biswas 《Biorheology》1983,20(6):733-744
In this paper, Couette flow of blood is modelled as a three-layered flow. The model basically consists of a core (red-cell suspension) and plasma (a Newtonian fluid) in the top (near the moving plate) and bottom (near the stationary plate) layers. Flow is assumed to be steady and laminar and fluids are incompressible. A spin boundary condition at the interfaces is used by introducing two parameters. Analytic expressions for velocity, total angular velocity and effective viscosity have been obtained and their variations with spin parameters S and s, layer thickness, coupling number N and characteristic length ratio L are computed and shown graphically. One of the important observations of the analysis is the permissible values of the coupling number N is between 0 and 1/square root2 (in the existing literature, the range of N is 0 to 1). The present model includes Couette flow of one and three-layered Newtonian fluids and one-layered polar fluid models as its special cases. Applications of the proposed model to blood flow have been briefly discussed.  相似文献   

13.
Elevated plasma free fatty acids (FFA) induce skeletal muscle insulin resistance and impair endothelial function. The aim of this study was to characterize the acute hemodynamic effects of FFA in the eye and skin. A triglyceride (Intralipid 20%, 1.5 ml/min)/heparin (bolus: 200 IU; constant infusion rate: 0.2 IU. kg(-1). min(-1)) emulsion or placebo was administered to 10 healthy subjects. Measurements of pulsatile choroidal blood flow with laser interferometry, retinal blood flow with the blue field entoptic technique, peak systolic and end diastolic blood velocity (PSV, EDV) in the ophthalmic artery with Doppler sonography, and subcutaneous blood flow with laser Doppler flowmetry were performed during an euglycemic somatostatin-insulin clamp over 405 min. Plasma FFA/triglyceride elevation induced a rise in pulsatile choroidal blood flow by 25 +/- 3% (P < 0.001) and in retinal blood flow by 60 +/- 23% (P = 0.0125). PSV increased by 27 +/- 8% (P = 0.001), whereas EDV was not affected. Skin blood flow increased by 149 +/- 38% (P = 0.001). Mean blood pressure and pulse rate remained unchanged, whereas pulse pressure amplitude increased by 17 +/- 5% (P = 0.019). Infusion of heparin alone had no hemodynamic effect in the eye or skin. In conclusion, FFA/triglyceride elevation increases subcutaneous and ocular blood flow with a more pronounced effect in the retina than in the choroid, which may play a role for early changes of ocular perfusion in the insulin resistance syndrome.  相似文献   

14.
Two experiments were conducted to study the relationship of blood plasma urea nitrogen (PUN) concentrations with NH3, urea nitrogen, K, Mg, P, Ca, and Na concentrations in fluid of preovulatory follicles (experiment 1) and the relationships of PUN concentration and stage of estrus cycle with ammonia and urea nitrogen concentrations in uterine fluids (experiment 2) in early lactation dairy cows. Mean PUN levels were used to distribute cows into two groups: cows with PUN>or=20 mg/dl (HPUN), and cows with PUN<20 mg/dl (LPUN). In experiment 1, blood and follicular fluids from preovulatory follicles of 38 early lactation dairy cows were collected on the day of estrus (day 0) 4h after feed was offered. Follicular fluid NH3 was higher (P<0.01) in HPUN cows (339.0 micromol/L+/-72.2) compared to LPUN cows (93.9 micromol/L+/-13.1). Follicular fluid urea N was higher (P<0.001) in HPUN cows (22.4 mg/dl+/-0.4) compared to LPUN cows (17.0 mg/dl+/-0.3). PUN and follicular fluid urea N were correlated (r2=0.86) within cows. In experiment 2, blood and uterine fluids were collected from 30 cows on day 0 and on day 7. Uterine fluid NH3 was higher (P=0.05) in HPUN cows (1562 micromol/L+/-202) than in LPUN cows (1082 micromol/L+/-202) on day 7, but not on day 0. Uterine fluid urea N was higher (P<0.001) in HPUN cows than in LPUN cows on day 0 (26.9 mg/dl+/-1.3 and 20.4 mg/dl+/-0.7) and day 7 (26.5 mg/dl+/-1.1 and 21.4 mg/dl+/-1.1). There was a correlation (r2=0.17) between PUN and uterine fluid urea N within cows. The results of this study indicate that high PUN concentrations were associated with elevated NH3 and urea N concentrations in the preovulatory follicular fluids on the day of estrus and in the uterine fluid during the luteal phase of the estrous cycle in early lactation dairy cows. Elevated NH3 or urea N concentrations in the reproductive fluids may contribute to reproductive inefficiency in dairy cows with elevated plasma urea nitrogen due to embryo toxicity.  相似文献   

15.
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.  相似文献   

16.
We investigated the role of central activation in muscle length-dependent endurance. Central activation ratio (CAR) and rectified surface electromyogram (EMG) were studied during fatigue of isometric contractions of the knee extensors at 30 and 90 degrees knee angles (full extension = 0 degree). Subjects (n = 8) were tested on a custom-built ergometer. Maximal voluntary isometric knee extension with supramaximal superimposed burst stimulation (three 100-mus pulses; 300 Hz) was performed to assess CAR and maximal torque capacity (MTC). Surface EMG signals were obtained from vastus lateralis and rectus femoris muscles. At each angle, intermittent (15 s on 6 s off) isometric exercise at 50% MTC with superimposed stimulation was performed to exhaustion. During the fatigue task, a sphygmomanometer cuff around the upper thigh ensured full occlusion (400 mmHg) of the blood supply to the knee extensors. At least 2 days separated fatigue tests. MTC was not different between knee angles (30 degrees : 229.6 +/- 39.3 N.m vs. 90 degrees: 215.7 +/- 13.2 N.m). Endurance times, however, were significantly longer (P < 0.05) at 30 vs. 90 degrees (87.8 +/- 18.7 vs. 54.9 +/- 12.1 s, respectively) despite the CAR not differing between angles at torque failure (30 degrees: 0.95 +/- 0.05 vs. 90 degrees: 0.96 +/- 0.03) and full occlusion of blood supply to the knee extensors. Furthermore, rectified surface EMG values of the vastus lateralis (normalized to prefatigue maximum) were also similar at torque failure (30 degrees : 56.5 +/- 12.5% vs. 90 degrees : 58.3 +/- 15.2%), whereas rectus femoris EMG activity was lower at 30 degrees (44.3 +/- 12.4%) vs. 90 degrees (69.5 +/- 25.3%). We conclude that differences in endurance at different knee angles do not find their origin in differences in central activation and blood flow but may be a consequence of muscle length-related differences in metabolic cost.  相似文献   

17.
Blood flow in the corpus luteum of the pseudopregnant rabbit was measured with tracer-labelled microspheres before and at 1 and 3 h after saline treatment (N = 8) or after inhibition of progesterone synthesis with aminoglutethimide (N = 10). Before treatment luteal blood flow (29.5 +/- 3.9 ml/min.g-1 (mean +/- s.e.m.] was much higher than blood flow to other tissues (ovarian stroma = 2.9 +/- 0.6; uterus = 0.5 +/- 0.1; adrenal gland = 2.6 +/- 0.2 ml/min.g-1). Aminoglutethimide reduced serum progesterone by 60% within 1 h but luteal blood flow was unchanged (26.2 +/- 3.5 ml/min.g-1). At 3 h after aminoglutethimide, serum progesterone remained low and luteal blood flow was slightly reduced to 22.5 +/- 3.4 ml/min.g-1. This reduction was associated with a significant decline in mean arterial blood pressure which resulted in luteal vascular resistance being unaltered by aminoglutethimide treatment. Further analysis of these data indicated that serum progesterone concentration was not significantly correlated with blood flow to the corpora lutea or with blood flow to other tissues. In contrast, mean arterial blood pressure was highly correlated with blood flow to the corpus luteum (r = 0.80; P less than 0.001) but not to the ovarian stroma (r = 0.04), or adrenal gland (r = 0.06). These results indicate that luteal blood flow is not acutely responsive to changes in luteal progesterone production and suggest that luteal blood flow changes passively with changes in arterial blood pressure.  相似文献   

18.
The mechanisms responsible for the initial rise in splanchnic vascular resistance with environmental heating are controversial, and those responsible for the subsequent fall in splanchnic resistance in the severely hyperthermic animal are unknown. Thus we examined the effect of environmental heating on plasma catecholamine concentration, splanchnic sympathetic nerve activity (SNA), and select blood chemistries. In one study, 25 male Sprague-Dawley rats (270-300 g) were assigned to one of five groups on the basis of their core temperature (Tc, 37, 39, 41, 43, or 44 degrees C) at death. Heart rate (HR), mean arterial pressure (MAP), and Tc were monitored during heat stress under alpha-chloralose anesthesia (12.5 mg.ml-1.h-1). At each predetermined Tc, an aortic blood sample was drawn and analyzed for mean plasma concentration of norepinephrine (NE), epinephrine (E), Na+, K+, and lactate. From 41 to 43 degrees C, NE and E rose significantly, and the animals became hyperkalemic and lactacidemic. In a separate study, we quantitated SNA from the greater splanchnic nerve during heat exposure of artificially respired animals anesthetized with pentobarbital sodium (50 mg/kg). MAP, splanchnic SNA, and Tc were recorded. Tc was elevated from 37.0 +/- 0.12 to 41.3 +/- 0.18 degrees C in 70 min by increase of ambient temperature to 38 degrees C in an environmental chamber. Splanchnic SNA was 54 +/- 8 spikes/s at a Tc of 37 degrees C and increased significantly as Tc exceeded 39 degrees C (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We aimed to determine whether there were differences in the extent and time course of skeletal muscle myofibrillar protein synthesis (MPS) and muscle collagen protein synthesis (CPS) in human skeletal muscle in an 8.5-h period after bouts of maximal muscle shortening (SC; average peak torque = 225 +/- 7 N.m, means +/- SE) or lengthening contractions (LC; average peak torque = 299 +/- 18 N.m) with equivalent work performed in each mode. Eight healthy young men (21.9 +/- 0.6 yr, body mass index 24.9 +/- 1.3 kg/m2) performed 6 sets of 10 maximal unilateral LC of the knee extensors on an isokinetic dynamometer. With the contralateral leg, they then performed 6 sets of maximal unilateral SC with work matched to the total work performed during LC (10.9 +/- 0.7 vs. 10.9 +/- 0.8 kJ, P = 0.83). After exercise, the participants consumed small intermittent meals to provide 0.1 g.kg(-1).h(-1) of protein and carbohydrate. Prior exercise elevated MPS above rest in both conditions, but there was a more rapid rise after LC (P < 0.01). The increases (P < 0.001) in CPS above rest were identical for both SC and LC and likely represent a remodeling of the myofibrillar basement membrane. Therefore, a more rapid rise in MPS after maximal LC could translate into greater protein accretion and muscle hypertrophy during chronic resistance training utilizing maximal LC.  相似文献   

20.
D Liepsch  S Moravec 《Biorheology》1984,21(4):571-586
In addition to biochemical factors, hydromechanical influences are responsible for atherogenesis and deposits of blood platelets at bends and bifurcations of human arteries. Hence the flow patterns were simulated in a true-to-scale three-dimensional bifurcation of a human renal artery model and of an arterial femoralis with Newtonian and non-Newtonian blood like fluid. Investigations were made with steady and pulsatile flow. The velocity profiles (at physiological Re-numbers) were measured after the bifurcations with a laser-Doppler-anemometer. In previous works Newtonian fluids were used to investigate the flow in bends and bifurcations of rigid and elastic simplified models. In this paper, emphasis is placed on the difference between rigid and elastic models and also Newtonian and non Newtonian flow behavior. Differences between Newtonian and non Newtonian fluids may especially be expected to occur after branches where the flow has local strong convective elements such as in reverse zones and flow separation points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号