首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus megaterium contains an NADH-linked disulfide reductase that is specific for disulfides containing pantethine 4',4'-diphosphate moieties. This reductase is at its highest level in cells late in sporulation and in dormant spores, and could be involved in the formation and cleavage of coenzyme A-protein disulfides which take place late in sporulation and early in spore germination, respectively.  相似文献   

2.
Reversible inactivation of guanylate cyclase by mixed disulfide formation   总被引:14,自引:0,他引:14  
Highly purified preparations of guanylate cyclase from rat lung were inactivated by several disulfide compounds in a time- and dose-dependent manner. Cystamine and cystine were the most potent disulfides tested, but other compounds which contained the cysteamine moiety (NH2CH2CH2S-), including pantethine and oxidized coenzyme A, were also able to partially inactivate the enzyme. In addition to the decrease in basal activity (measured with either Mg2+-GTP or Mn2+-GTP), disulfide-inhibited enzyme was activated to a lesser extent by nitric oxide. Treatment with dithiothreitol or other reducing agents restored basal activity and increased the level of cGMP production following nitric oxide activation. Control enzyme samples exhibited a single GTP Km of 25 microM or 150 microM with Mn2+ or Mg2+, respectively. However, cystamine-treated enzyme showed these same Km values as well as an additional GTP Km of 2 to 3 microM using either metal ion as cofactor. When [35S]cystine was incubated with purified enzyme, radioactivity was incorporated into the trichloroacetic acid-precipitable protein, and the counts were released following dithiothreitol treatment. In addition, [35S]cystine-labeled enzyme co-migrated with native guanylate cyclase on nondenaturing polyacrylamide gels. These data indicate that mixed disulfides can be formed between guanylate cyclase and certain naturally occurring compounds, and that disulfide formation leads to a reversible loss of enzyme activity.  相似文献   

3.
Dormant spores of Bacillus megaterium were found to contain approximately 850 pmol of coenzyme A (CoA) per milligram of dry weight. Of this total, less than 1.5% was acetyl-CoA, 25% was CoA-disulfide, 43% was in disulfide linkage to protein, and the remainder was the free thiol. Dormand spores of Bacillus cereus and Clostridium bifermentans contained 700 and 600 pmol of CoA per milligram of dry weight, respectively; in both species approximately 45% of the CoA 45% of the CoA was in disulfide linkage to protein. During germination of spores of all three species, greater than 75% of the CoA-protein disulfides were cleaved. In B. megaterium, cleavage of these disulfides during spore germination did not require exogenous metabolites and occurred at about the same time as the initiation of germination. Much of the CoA was converted to acetyl-CoA at this time. Dormant spores also contained reduced nicotinamide adenine dinucleotide-dependent CoA-disulfide reductase at levels higher than those in other stages of growth. The level of total CoA in the growing cells was two- to three-fold higher than in spores. This level remained constant throughout growth and sporulation, but less than 2% of the total cellular CoA was in disulfide linkage to protein until late in sporulation. The CoA-protein disulfides accumulated exclusively within the developing spore at about the time when dipicolinic acid was accumulated.  相似文献   

4.
Rabbit muscle phosphofructokinase is rapidly inactivated at pH 8.0 by incubation with low concentrations of oxidized glutathione, Coenzyme A glutathione mixed disulfide, and oxidized Coenzyme A. The inactivation is first order in disulfide concentration over the concentration ranges examined (50-200 microM), and is approximately 8-fold slower at pH 7.0 than at pH 8.0. The substrates ATP and fructose 6-phosphate protect against inactivation while effector molecules such as AMP, cAMP, and citrate do not. The oxidation of the enzyme by disulfides is fully reversible. The equilibrium constant for the reaction Ered + GSSG in equilibrium Eox + GSH at pH 8.0 is 7.1 in the absence of substrates and 2.5 in the presence of 0.1 mM ATP. For comparison, the equilibrium constant for the reaction CoASH + GSSG in equilibrium CoASSG + GSH was found to be 3.1 at pH 8.0. These equilibrium constants for thiol/disulfide exchange are such that modulation of phosphofructokinase activity by thiol/disulfide exchange in vivo is feasible. The ability of the thiol/disulfide ratio in vivo to modulate the activity of the fructose 6-phosphate/fructose 1,6-diphosphate futile cycle is discussed. The possibility is considered that modulation of the thiol/disulfide ratio in vivo may serve as a "third messenger" in response to cAMP levels, and that the activity of key enzymes of glycolysis/gluconeogenesis may be regulated in response to changing thiol/disulfide ratios.  相似文献   

5.
Glutathione reductase (NAD(P)H: oxidized-glutathione oxidoreductase, EC 1.6.4.2) was purified to homogeneity from porcine erythrocytes by use of affinity chromatography on 2',5'-ADP-Sepharose 4-B. Analytical ultracentrifugation experiments were analysed to give the following physical parameters for the enzyme: s20,w = 5.7 S, D20,w = 50 microgram2/s, and Mw = 103 000 (protein concentration, 0.5 mg/ml). The frictional ratio was 1.37 and the Stokes radius was 4.3 nm. The enzyme molecule is a dimer composed of subunits of equal size each containing a FAD molecule. The amino acid compositions and circular dichroism spectra of the porcine and human enzymes indicated extensive structural similarities. The isoelectric point was at pH 6.85 (at 4 degrees C). The absorption spectrum of the oxidized enzyme had maxima at 377 and 462 nm. In vivo the enzyme appears to be partially reduced. At a physiological concentration of reduced glutathione the apparent Michaelis constants for glutathione disulfide and NADPH were higher than in the absence of reduced glutathione. At 0.15 M ionic strength the catalytic activity obtained with NADPH as reductant was optimal at pH 7 and more than 200 times higher than that obtained with NADH. S-sulfoglutathione and some mixed disulfides of glutathione were poor substrates with the exception of the mixed disulfide of coenzyme A and reduced glutathione. The purified enzyme displayed low transhydrogenase activity with oxidized pyridine nucleotide analogs and diaphorase activity with 2,6-dichlorophenolindophenol as acceptor substrates; both NADPH and NADH served as donors.  相似文献   

6.
In a biosynthetic study of the spore coat of Bacillus megaterium ATCC 12872 spore with galactosamine phosphate as a major component of the outer coat, high-performance liquid chromatography (HPLC) and enzyme immunoassay were applied for the measurement of UDP-N-acetylglucosamine-4-epimerase [EC 5.1.3.7] activity and the enzyme protein concentration, respectively. The new HPLC system using an ion-pair (or anion-exchange) column allowed us to determine successfully the enzyme activity and its application, proving that the specific activity of the enzyme in the cells increased at the later stage of sporulation. This increase in activity was parallel to the induction of enzyme protein synthesis, which was detected by sandwich enzyme immunoassay using antiserum to the purified enzyme. These results suggested that the regulation of this enzyme is at the genetic level and it plays an important role in the outer coat synthesis in the later sporulation stage of B. megaterium.  相似文献   

7.
Chicken liver fatty acid synthase is rapidly inactivated and cross-linked at pH 7.2 and 8.0 by incubation with low concentrations of common biological disulfides including glutathione disulfide, coenzyme A disulfide, and glutathione-coenzyme A-mixed disulfide. Glutathione disulfide inactivation of the enzyme is accompanied by the oxidation of a total of 4-5 enzyme thiols per monomer. Only one glutathione equivalent is incorporated per monomer as a protein-mixed disulfide, and its rate of incorporation is significantly slower than the rate of inactivation. The formation of protein-SS-protein disulfides results in significant cross-linking of enzyme subunits. The inactive enzyme is rapidly and completely reactivated, and the cross-linking is completely reversed by incubation of the enzyme with thiols (10-20 mM) including dithiothreitol, mercaptoethanol, and glutathione. In a glutathione redox buffer (GSH + GSSG), disulfide bond formation comes to equilibrium. The enzyme activity at equilibrium is dependent both on the ratio of glutathione to glutathione disulfide and on the total glutathione concentration. The equilibrium constant for the redox equilibration of fatty acid synthase in a glutathione redox buffer is 15 mM (Ered + GSSG in equilibrium Eox + 2GSH). The formation of at least one protein-protein disulfide per monomer dominates the redox properties of the enzyme while the formation of one protein-mixed disulfide with glutathione (Kmixed = 0.45) has little effect on activity. The oxidation equilibrium constant suggests that there would be no significant cycling between the reduced and the oxidized enzyme in response to likely physiological variations in the hepatic glutathione status. The possibility that changes in the concentration of cellular glutathione may act as a mechanism for metabolic control of other enzymes is discussed.  相似文献   

8.
A nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.3) inactivated by incubation at low temperatures was detected in several species of the genus Bacillus, including strains of B. cereus, B. laterosporus, B. lentus, B. panthotenicus, B. pasteurii, B. sphaericus, B. stearothermophilus, B. subtilis and B. thuringiensis. Incubation of cell-free extracts of these strains at 0 degrees C resulted in an 80-100% inactivation of NAD-GluDH activity within 120 min. The addition of 20% glycerol protected the enzyme from this inactivation in the cold. Strains of B. fastidiosus, B. licheniformis, B. macerans, B. megaterium and B. pumilus were found to lack NAD-GluDH activity.  相似文献   

9.
Glutathione reductase (NAD(P)H : oxidised-glutathione oxidoreductase, EC 1.6.4.2) was purified from baker's yeast by a new procedure involving affinity chromatography on 2',5'-ADP-Sepharose 4B. The yield was 65% of essentially homogeneous enzyme. The activity was assayed with both glutathione disulfide (GSSG) and the mixed disulfide of coenzyme A and glutathione (CoAssg). The two disulfide substrates gave coinciding activity profiles and a constant ratio of the activities in different chromatographic and electrophoretic systems. No evidence was obtained for the existence of a reductase specific for CoASSG distinct from glutathione reductase. It is concluded that normal baker's yeast contains a single reductase active with both GSSG and CoASSG.  相似文献   

10.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

11.
Seah SY  Britton KL  Rice DW  Asano Y  Engel PC 《Biochemistry》2002,41(38):11390-11397
Homology-based modeling of phenylalanine dehydrogenases (PheDHs) from various sources, using the structures of homologous enzymes Clostridium symbiosum glutamate dehydrogenase and Bacillus sphaericus leucine dehydrogenase as a guide, revealed that an asparagine residue at position 145 of B. sphaericus PheDH was replaced by valine or alanine in PheDHs from other sources. This difference was proposed to be the basis for the poor discrimination by the B. sphaericus enzyme between the substrates L-phenylalanine and L-tyrosine. Residue 145 of this enzyme was altered, by site-specific mutagenesis, to hydrophobic residues alanine, valine, leucine, and isoleucine, respectively. The resultant mutants showed a high discrimination, above 50-fold, between L-phenylalanine and L-tyrosine. This higher specificity toward L-phenylalanine was due to K(m) values for L-phenylalanine lowered more than 20-fold compared to the values for L-tyrosine. The greater specificity for L-phenylalanine in the wild-type Bacillus badius enzyme, which has a valine residue in the corresponding position, was also found to be largely due to a lower K(m) for this substrate. Activities were also measured with a range of six amino acids with aliphatic, nonpolar side chains, and with the corresponding oxoacids, and in all cases the specificity constants for these substrates were increased in the mutant enzymes. As with phenylalanine, these increases are mainly attributable to large decreases in K(m) values.  相似文献   

12.
Ten of 80 endospore-forming bacilli, isolated from various habitats of Jordan, were found to be highly toxic to the 4th instar larvae of Culiseta longiareolata (Macquart). The bacilli were identified into the following species and strains: Bacillus sphaericus (H6), B. sphaericus (H9a, 9b), B. cereus Frankland and Frankland, B. brevis Migula and B. megaterium Bary. Bacillus cereus comprised 50% of the isolates. The toxic concentrations of these isolates against C. longiareolata ranged between 1.2 x 10(7) and 1.1 x 10(9) viable spores ml-1.  相似文献   

13.
Bacillus megaterium N.C.T.C. no. 10342 exhibits glutamate synthetase (EC 2.6.1.53) and glutamate dehydrogenase (EC 1.4.1.4) activities. Concentrations of glutamate synthase were high when the bacteria were grown on 3mM-NH4Cl and low when they were grown on 100mM-NH4Cl, whereas glutamate dehydrogenase concentrations were higher when the bacteria were grown on 100mM-NH4Cl than on 3mM-NH4Cl. Glutamate synthase and glutamate dehydrogenase were purified to homogeneity from B. megaterium grown in 10mM-glucose/10mM-NH4Cl. The purified enzymes had mol.wts. 840000 and 270000 for glutamate synthase and glutamate dehydrogenase respectively. The Km values for substrates with NADPH and coenzyme were (glutamate synthase activity shown first) 9 micron and 360 micron for 2-oxoglutarate, 7.1 micron and 8.7 micron for NADPH, and 0.2 mM for glutamine and 22 mM for NH4Cl, similar values to those of enzymes from Escherichia coli. Glutamate synthase contained NH3-dependent activity (different from authentic glutamate dehydrogenase), which was enhanced 4-fold during treatment at pH 4.6 NH3-dependent activity was generally about 2% of the glutamine-dependent activity. Amidination of glutamate synthase by the bi-functional cross-linking reagent dimethyl suberimidate inactivated glutamine-dependent glutamate synthase activity, but increased NH3-dependent activity. A cross-linked structure of mol.wt. approx 200000 was the main product formed.  相似文献   

14.
Analogs (1----6) of diaminopimelic acid have been synthesized and tested for inhibition of meso-diaminopimelate decarboxylases from Bacillus sphaericus IFO 3525 and from wheat germ (Triticum vulgaris). Difluoromethyl diaminopimelate 1 does not irreversibly inactivate or strongly competitively inhibit either enzyme. Lanthionine sulfoxides (2ab, 2c, and 2d) are good competitive inhibitors (about 50% inhibition at 1 mM) of both decarboxylases. The meso and LL-isomers of lanthionine sulfone (3ab and 3c) and lanthionine (6ab and 6c) are weaker competitive inhibitors (about 50% inhibition at 10-20 mM). The corresponding DD-isomers (3d and 6d) are less effective. The N-modified analogs are the most potent competitive inhibitors. The inhibition constant (Ki) values for B. sphaericus and wheat germ decarboxylases with N-hydroxydiaminopimelate 4 (mixture of isomers) are 0.91 and 0.71 mM, respectively; for the N-aminodiaminopimelate 5 (mixture of isomers) the Ki values are 0.10 and 0.084 mM, respectively. These N-modified analogs do not effectively inhibit L-lysine decarboxylase. None of the compounds showed any time-dependent inactivation of the decarboxylases, in contrast to behavior of other pyridoxal phosphate-dependent enzymes with analogous substrate derivatives. Possible mechanisms of inhibition are discussed. In preliminary tests for antibiotic activity 4 and 5 both gave 75% growth inhibition of Bacillus megaterium at 20 micrograms/ml in defined media. Other analogs (1----3) showed essentially no antibacterial activity.  相似文献   

15.
Abstract: A dipeptidase activity on ms -A2pm- d -Ala and l -Lys- d -Ala was found in sporulating cells of Bacillus sphaericus 9602. The specific activity of this enzyme was low during the growth cycle and showed a rapid increase throughout sporulation. Values in the dormant spores were 1.3-fold higher than those found in cells late in sporulation and 20-fold higher than those found in log-phase cells.  相似文献   

16.
NAD+-dependent phenylalanine dehydrogenases were purified 1,500- and 1,600-fold, and crystallized from Sporosarcina ureae SCRC-R04 and Bacillus sphaericus SCRC-R79a, respectively. The purified enzymes were homogeneous as judged by disc gel electrophoresis. The enzyme from S. ureae has a molecular weight of 305,000, while that of B. sphaericus has a molecular weight of 340,000. Each is probably composed of eight subunits identical in molecular weight. The S. ureae enzyme showed a high substrate specificity in the oxidative deamination reaction acting on L-phenylalanine, while that of B. sphaericus acted on L-phenylalanine and L-tyrosine. The enzymes had lower substrate specificities in the reductive amination reaction acting on alpha-keto acids. The Sporosarcina enzyme acted on phenylpyruvate, alpha-ketocaproate, alpha-keto-gamma-methylthiobutyrate and rho-hydroxyphenylpyruvate. The Bacillus enzyme acted on rho-hydroxyphenylpyruvate, phenylpyruvate, and alpha-keto-gamma-methylthiobutyrate. The enzyme from B. sphaericus catalyzes The enzyme from B. sphaericus catalyzes the transfer of pro-S (B) hydrogen from NADH.  相似文献   

17.
The purification and characterization of a pyrimidine dimer-specific glycosylase/AP lyase from Bacillus sphaericus (Bsp-pdg) are reported. Bsp-pdg is highly specific for DNA containing the cis-syn cyclobutane pyrimidine dimer, displaying no detectable activity on oligonucleotides with trans-syn I, trans-syn II, (6-4), or Dewar photoproducts. Like other glycosylase/AP lyases that sequentially cleave the N--glycosyl bond of the 5' pyrimidine of a cyclobutane pyrimidine dimer, and the phosphodiester backbone, this enzyme appears to utilize a primary amine as the attacking nucleophile. The formation of a covalent enzyme-DNA imino intermediate is evidenced by the ability to trap this protein-DNA complex by reduction with sodium borohydride. Also consistent with its AP lyase activity, Bsp-pdg was shown to incise an AP site-containing oligonucleotide, yielding beta- and delta-elimination products. N-terminal amino acid sequence analysis of this 26 kDa protein revealed little amino acid homology to any previously reported protein. This is the first report of a glycosylase/AP lyase enzyme from Bacillus sphaericus that is specific for cis-syn pyrimidine dimers.  相似文献   

18.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

19.
Peptidase and protease activities on many different substrates have been determined in several stages of growth of Bacillus megaterium. Extracts of log-phase cells, sporulating cells, and dormant spores of B. megaterium each hydrolyzed 16 different di- and tripeptides. The specific peptidase activity was highest in dormant spores, and the activity in sporulating cells and log-phase cells was about 1.2-fold and 2- to 3-fold lower, respectively. This peptidase acticity was wholly intracellular since extracellular peptidase activity was not detected throughout growth and sporulation. In contrast, intracellular protease activity on a variety of common protein substrates was highest in sporulating cells, and much extracellular activity was also present at this time. The specific activity of intracellular protease in sporulating cells was about 50- and 30-fold higher than that in log-phase cells and dormant spores, respectively. However, the two unique dormant spores proteins known to be the major species degraded during spore germination were degraded most rapidly by extracts of dormant spores, and slightly slower by extracts from log-phase or sporulating cells. The specific activities for degradation of peptides and proteins are compared to values for intracellular protein turnover during various stages of growth.  相似文献   

20.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3, 600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号