首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular due to its flexibility and efficiency. Based on adaptations applied, adaptive designs can be classified into three categories: prospective, concurrent (ad hoc), and retrospective adaptive designs. An adaptive design allows modifications made to trial and/or statistical procedures of ongoing clinical trials. However, it is a concern that the actual patient population after the adaptations could deviate from the originally target patient population and consequently the overall type I error (to erroneously claim efficacy for an infective drug) rate may not be controlled. In addition, major adaptations of trial and/or statistical procedures of on-going trials may result in a totally different trial that is unable to address the scientific/medical questions the trial intends to answer. In this article, several commonly considered adaptive designs in clinical trials are reviewed. Impacts of ad hoc adaptations (protocol amendments), challenges in by design (prospective) adaptations, and obstacles of retrospective adaptations are described. Strategies for the use of adaptive design in clinical development of rare diseases are discussed. Some examples concerning the development of Velcade intended for multiple myeloma and non-Hodgkin's lymphoma are given. Practical issues that are commonly encountered when implementing adaptive design methods in clinical trials are also discussed.  相似文献   

2.
Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.  相似文献   

3.
Adaptive seamless designs combine confirmatory testing, a domain of phase III trials, with features such as treatment or subgroup selection, typically associated with phase II trials. They promise to increase the efficiency of development programmes of new drugs, for example, in terms of sample size and/or development time. It is well acknowledged that adaptive designs are more involved from a logistical perspective and require more upfront planning, often in the form of extensive simulation studies, than conventional approaches. Here, we present a framework for adaptive treatment and subgroup selection using the same notation, which links the somewhat disparate literature on treatment selection on one side and on subgroup selection on the other. Furthermore, we introduce a flexible and efficient simulation model that serves both designs. As primary endpoints often take a long time to observe, interim analyses are frequently informed by early outcomes. Therefore, all methods presented accommodate interim analyses informed by either the primary outcome or an early outcome. The R package asd , previously developed to simulate designs with treatment selection, was extended to include subgroup selection (so-called adaptive enrichment designs). Here, we describe the functionality of the R package asd and use it to present some worked-up examples motivated by clinical trials in chronic obstructive pulmonary disease and oncology. The examples both illustrate various features of the R package and provide insights into the operating characteristics of adaptive seamless studies.  相似文献   

4.
Flexible designs are provided by adaptive planning of sample sizes as well as by introducing the weighted inverse normal combining method and the generalized inverse chi-square combining method in the context of conducting trials consecutively step by step. These general combining methods allow quite different weighting of sequential study parts, also in a completely adaptive way, based on full information from unblinded data in previously performed stages. So, in reviewing some basic developments of flexible designing, we consider a generalizing approach to group sequentially performed clinical trials of Pocock-type, of O'Brien-Fleming-type, and of Self-designing-type. A clinical trial may be originally planned either to show non-inferiority or superiority. The proposed flexible designs, however, allow in each interim analysis to change the planning from showing non-inferiority to showing superiority and vice versa. Several examples of clinical trials with normal and binary outcomes are worked out in detail. We demonstrate the practicable performance of the discussed approaches, confirmed in an extensive simulation study. Our flexible designing is a useful tool, provided that a priori information about parameters involved in the trial is not available or subject to uncertainty.  相似文献   

5.
Atkinson AC  Biswas A 《Biometrics》2005,61(1):118-125
Adaptive designs are used in phase III clinical trials for skewing the allocation pattern toward the better treatments. We use optimum design theory to derive a skewed Bayesian biased-coin procedure for sequential designs with continuous responses. The skewed designs are used to provide adaptive designs, the performance of which is studied numerically and theoretically. Important properties are loss and the proportion of allocation to the better treatment.  相似文献   

6.
S J Pocock 《Biometrics》1979,35(1):183-197
This article is intended as a practical guide to the various methods of patient assignment in clinical trials. Topics discussed include a critical appraisal of non-randomized studies, methods of restricted randomization such as random permuted blocks and the biased coin technique, the extent to which stratification is necessary and the methods available, the possible benefits of randomization with a greater proportion of patients on a new treatment, factorial designs, crossover designs, randomized consent designs and adaptive assignment procedures. With all this diversity of approach it needs to be remembered that the effective implementation and reliability of a relatively straightforward randomization scheme may be more important than attempting theoretical optimality with more complex designs.  相似文献   

7.
The article provides a perspective on the challenges for biostatistics as well as on contributions that biostatisticians are making and can make to medical product development and regulation and what the future might be in these areas. The current environment in the United States for pharmaceutical development and regulation is discussed along with the expectations that the public has for how medical products should contribute to public heath. The globalization of research and the use of study designs that incorporate multi-regional populations present new challenges for design and inference. The emerging interest in and development of the science of safety assessment and quantitative approaches to risk evaluation is considered. Guidance development, especially in the area of clinical trials design, continues to be one of the needs that FDA is asked to meet. Guidance development is proceeding for non-inferiority study designs, adaptive designs, multiple endpoints in clinical trials, and missing outcome data in clinical trials. Biostatisticians will be asked and challenged to take on leadership roles in new areas such as personalized medicine, biomarker and genomics, development of new tools for visual display of clinical data, quality assurance and monitoring in clinical trials.  相似文献   

8.
Englert S  Kieser M 《Biometrics》2012,68(3):886-892
Summary Phase II trials in oncology are usually conducted as single-arm two-stage designs with binary endpoints. Currently available adaptive design methods are tailored to comparative studies with continuous test statistics. Direct transfer of these methods to discrete test statistics results in conservative procedures and, therefore, in a loss in power. We propose a method based on the conditional error function principle that directly accounts for the discreteness of the outcome. It is shown how application of the method can be used to construct new phase II designs that are more efficient as compared to currently applied designs and that allow flexible mid-course design modifications. The proposed method is illustrated with a variety of frequently used phase II designs.  相似文献   

9.
Although linear rank statistics for the two‐sample problem are distribution free tests, their power depends on the distribution of the data. In the planning phase of an experiment, researchers are often uncertain about the shape of this distribution and so the choice of test statistic for the analysis and the determination of the required sample size are based on vague information. Adaptive designs with interim analysis can potentially overcome both problems. And in particular, adaptive tests based on a selector statistic are a solution to the first. We investigate whether adaptive tests can be usefully implemented in flexible two‐stage designs to gain power. In a simulation study, we compare several methods for choosing a test statistic for the second stage of an adaptive design based on interim data with the procedure that applies adaptive tests in both stages. We find that the latter is a sensible approach that leads to the best results in most situations considered here. The different methods are illustrated using a clinical trial example.  相似文献   

10.
ABSTRACT: Adaptive designs allow planned modifications based on data accumulating within a study. The promise of greater flexibility and efficiency stimulates increasing interest in adaptive designs from clinical, academic, and regulatory parties. When adaptive designs are used properly, efficiencies can include a smaller sample size, a more efficient treatment development process, and an increased chance of correctly answering the clinical question of interest. However, improper adaptations can lead to biased studies. A broad definition of adaptive designs allows for countless variations, which creates confusion as to the statistical validity and practical feasibility of many designs. Determining properties of a particular adaptive design requires careful consideration of the scientific context and statistical assumptions. We first review several adaptive designs that garner the most current interest. We focus on the design principles and research issues that lead to particular designs being appealing or unappealing in particular applications. We separately discuss exploratory and confirmatory stage designs in order to account for the differences in regulatory concerns. We include adaptive seamless designs, which combine stages in a unified approach. We also highlight a number of applied areas, such as comparative effectiveness research, that would benefit from the use of adaptive designs. Finally, we describe a number of current barriers and provide initial suggestions for overcoming them in order to promote wider use of appropriate adaptive designs. Given the breadth of the coverage all mathematical and most implementation details are omitted for the sake of brevity. However, the interested reader will find that we provide current references to focused reviews and original theoretical sources which lead to details of the current state of the art in theory and practice.  相似文献   

11.
Due to increasing discoveries of biomarkers and observed diversity among patients, there is growing interest in personalized medicine for the purpose of increasing the well‐being of patients (ethics) and extending human life. In fact, these biomarkers and observed heterogeneity among patients are useful covariates that can be used to achieve the ethical goals of clinical trials and improving the efficiency of statistical inference. Covariate‐adjusted response‐adaptive (CARA) design was developed to use information in such covariates in randomization to maximize the well‐being of participating patients as well as increase the efficiency of statistical inference at the end of a clinical trial. In this paper, we establish conditions for consistency and asymptotic normality of maximum likelihood (ML) estimators of generalized linear models (GLM) for a general class of adaptive designs. We prove that the ML estimators are consistent and asymptotically follow a multivariate Gaussian distribution. The efficiency of the estimators and the performance of response‐adaptive (RA), CARA, and completely randomized (CR) designs are examined based on the well‐being of patients under a logit model with categorical covariates. Results from our simulation studies and application to data from a clinical trial on stroke prevention in atrial fibrillation (SPAF) show that RA designs lead to ethically desirable outcomes as well as higher statistical efficiency compared to CARA designs if there is no treatment by covariate interaction in an ideal model. CARA designs were however more ethical than RA designs when there was significant interaction.  相似文献   

12.

Background

It can be argued that adaptive designs are underused in clinical research. We have explored concerns related to inadequate reporting of such trials, which may influence their uptake. Through a careful examination of the literature, we evaluated the standards of reporting of group sequential (GS) randomised controlled trials, one form of a confirmatory adaptive design.

Methods

We undertook a systematic review, by searching Ovid MEDLINE from the 1st January 2001 to 23rd September 2014, supplemented with trials from an audit study. We included parallel group, confirmatory, GS trials that were prospectively designed using a Frequentist approach. Eligible trials were examined for compliance in their reporting against the CONSORT 2010 checklist. In addition, as part of our evaluation, we developed a supplementary checklist to explicitly capture group sequential specific reporting aspects, and investigated how these are currently being reported.

Results

Of the 284 screened trials, 68(24%) were eligible. Most trials were published in “high impact” peer-reviewed journals. Examination of trials established that 46(68%) were stopped early, predominantly either for futility or efficacy. Suboptimal reporting compliance was found in general items relating to: access to full trials protocols; methods to generate randomisation list(s); details of randomisation concealment, and its implementation. Benchmarking against the supplementary checklist, GS aspects were largely inadequately reported. Only 3(7%) trials which stopped early reported use of statistical bias correction. Moreover, 52(76%) trials failed to disclose methods used to minimise the risk of operational bias, due to the knowledge or leakage of interim results. Occurrence of changes to trial methods and outcomes could not be determined in most trials, due to inaccessible protocols and amendments.

Discussion and Conclusions

There are issues with the reporting of GS trials, particularly those specific to the conduct of interim analyses. Suboptimal reporting of bias correction methods could potentially imply most GS trials stopping early are giving biased results of treatment effects. As a result, research consumers may question credibility of findings to change practice when trials are stopped early. These issues could be alleviated through a CONSORT extension. Assurance of scientific rigour through transparent adequate reporting is paramount to the credibility of findings from adaptive trials. Our systematic literature search was restricted to one database due to resource constraints.  相似文献   

13.
Temporal changes exist in clinical trials. Over time, shifts in patients' characteristics, trial conduct, and other features of a clinical trial may occur. In typical randomized clinical trials, temporal effects, that is, the impact of temporal changes on clinical outcomes and study analysis, are largely mitigated by randomization and usually need not be explicitly addressed. However, temporal effects can be a serious obstacle for conducting clinical trials with complex designs, including the adaptive platform trials that are gaining popularity in recent medical product development. In this paper, we introduce a Bayesian robust prior for mitigating temporal effects based on a hidden Markov model, and propose a particle filtering algorithm for computation. We conduct simulation studies to evaluate the performance of the proposed method and provide illustration examples based on trials of Ebola virus disease therapeutics and hemostat in vascular surgery.  相似文献   

14.
Clinical trials with adaptive sample size reassessment based on an unblinded analysis of interim results are perhaps the most popular class of adaptive designs (see Elsäßer et al., 2007). Such trials are typically designed by prespecifying a zone for the interim test statistic, termed the promising zone, along with a decision rule for increasing the sample size within that zone. Mehta and Pocock (2011) provided some examples of promising zone designs and discussed several procedures for controlling their type‐1 error. They did not, however, address how to choose the promising zone or the corresponding sample size reassessment rule, and proposed instead that the operating characteristics of alternative promising zone designs could be compared by simulation. Jennison and Turnbull (2015) developed an approach based on maximizing expected utility whereby one could evaluate alternative promising zone designs relative to a gold‐standard optimal design. In this paper, we show how, by eliciting a few preferences from the trial sponsor, one can construct promising zone designs that are both intuitive and achieve the Jennison and Turnbull (2015) gold‐standard for optimality.  相似文献   

15.
This is a discussion of the following two papers appearing in this special issue on adaptive designs: 'A regulatory view on adaptive/flexible clinical trial design' by H. M. James Hung, Robert T. O'Neill, Sue-Jane Wang and John Lawrence and 'Confirmatory clinical trials with an adaptive design' by Armin Koch.  相似文献   

16.
C B Begg  L A Kalish 《Biometrics》1984,40(2):409-420
Many clinical trials have a binary outcome variable. If covariate adjustment is necessary in the analysis, the logistic-regression model is frequently used. Optimal designs for allocating treatments for this model, or for any nonlinear or heteroscedastic model, are generally unbalanced with regard to overall treatment totals and totals within strata. However, all treatment-allocation methods that have been recommended for clinical trials in the literature are designed to balance treatments within strata, either directly or asymptotically. In this paper, the efficiencies of balanced sequential allocation schemes are measured relative to sequential Ds-optimal designs for the logistic model, using as examples completed trials conducted by the Eastern Cooperative Oncology Group and systematic simulations. The results demonstrate that stratified, balanced designs are quite efficient, in general. However, complete randomization is frequently inefficient, and will occasionally result in a trial that is very inefficient.  相似文献   

17.
Traditionally drug development is generally divided into three phases which have different aims and objectives. Recently so-called adaptive seamless designs that allow combination of the objectives of different development phases into a single trial have gained much interest. Adaptive trials combining treatment selection typical for Phase II and confirmation of efficacy as in Phase III are referred to as adaptive seamless Phase II/III designs and are considered in this paper. We compared four methods for adaptive treatment selection, namely the classical Dunnett test, an adaptive version of the Dunnett test based on the conditional error approach, the combination test approach, and an approach within the classical group-sequential framework. The latter two approaches have only recently been published. In a simulation study we found that no one method dominates the others in terms of power apart from the adaptive Dunnett test that dominates the classical Dunnett by construction. Furthermore, scenarios under which one approach outperforms others are described.  相似文献   

18.
Cheng Y  Shen Y 《Biometrics》2004,60(4):910-918
For confirmatory trials of regulatory decision making, it is important that adaptive designs under consideration provide inference with the correct nominal level, as well as unbiased estimates, and confidence intervals for the treatment comparisons in the actual trials. However, naive point estimate and its confidence interval are often biased in adaptive sequential designs. We develop a new procedure for estimation following a test from a sample size reestimation design. The method for obtaining an exact confidence interval and point estimate is based on a general distribution property of a pivot function of the Self-designing group sequential clinical trial by Shen and Fisher (1999, Biometrics55, 190-197). A modified estimate is proposed to explicitly account for futility stopping boundary with reduced bias when block sizes are small. The proposed estimates are shown to be consistent. The computation of the estimates is straightforward. We also provide a modified weight function to improve the power of the test. Extensive simulation studies show that the exact confidence intervals have accurate nominal probability of coverage, and the proposed point estimates are nearly unbiased with practical sample sizes.  相似文献   

19.
There has been much development in Bayesian adaptive designs in clinical trials. In the Bayesian paradigm, the posterior predictive distribution characterizes the future possible outcomes given the currently observed data. Based on the interim time-to-event data, we develop a new phase II trial design by combining the strength of both Bayesian adaptive randomization and the predictive probability. By comparing the mean survival times between patients assigned to two treatment arms, more patients are assigned to the better treatment on the basis of adaptive randomization. We continuously monitor the trial using the predictive probability for early termination in the case of superiority or futility. We conduct extensive simulation studies to examine the operating characteristics of four designs: the proposed predictive probability adaptive randomization design, the predictive probability equal randomization design, the posterior probability adaptive randomization design, and the group sequential design. Adaptive randomization designs using predictive probability and posterior probability yield a longer overall median survival time than the group sequential design, but at the cost of a slightly larger sample size. The average sample size using the predictive probability method is generally smaller than that of the posterior probability design.  相似文献   

20.
This is a discussion of the following three papers appearing in this special issue on adaptive designs: 'FDA's critical path initiative: A perspective on contributions of biostatistics' by Robert T. O'Neill, 'A regulatory view on adaptive/flexible clinical trial design' by H. M. James Hung, Robert T. O'Neill, Sue-Jane Wang and John Lawrence; and 'Confirmatory clinical trials with an adaptive design' by Armin Koch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号