共查询到20条相似文献,搜索用时 0 毫秒
1.
Nodal activity in the left lateral plate mesoderm (LPM) is required to activate left-sided Nodal signaling in the epithalamic region of the zebrafish forebrain. Epithalamic Nodal signaling subsequently determines the laterality of neuroanatomical asymmetries. We show that overactivation of Wnt/Axin1/beta-catenin signaling during late gastrulation leads to bilateral epithalamic expression of Nodal pathway genes independently of LPM Nodal signaling. This is consistent with a model whereby epithalamic Nodal signaling is normally bilaterally repressed, with Nodal signaling from the LPM unilaterally alleviating repression. We suggest that Wnt signaling regulates the establishment of the bilateral repression. We identify a second role for the Wnt pathway in the left/right regulation of LPM Nodal pathway gene expression, and finally, we show that at later stages Axin1 is required for the elaboration of concordant neuroanatomical asymmetries. 相似文献
2.
Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. 总被引:17,自引:0,他引:17
下载免费PDF全文

Eek-hoon Jho Tong Zhang Claire Domon Choun-Ki Joo Jean-Noel Freund Frank Costantini 《Molecular and cellular biology》2002,22(4):1172-1183
Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of beta-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by beta-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal. 相似文献
3.
4.
Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. 总被引:29,自引:2,他引:29
下载免费PDF全文

Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin. 相似文献
5.
6.
Cavodeassi F Carreira-Barbosa F Young RM Concha ML Allende ML Houart C Tada M Wilson SW 《Neuron》2005,47(1):43-56
During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/beta-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/beta-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells. 相似文献
7.
The Wnt/beta-catenin signalling pathway is evolutionarily conserved across many species and plays important roles during embryogenesis. The Lee-Heinrich model (to recognize the contributions of R. Heinrich we will refer to the work proposed by Lee et al. [Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M.W. (2003) The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PloS Biol. 1, 116-132] as the Lee-Heinrich model) describes this pathway by use of coupled ordinary differential equations. Here, we extend this model by introducing negative feedback loops of the pathway using time-delay differential equations. Single- and multiple-parameter perturbations suggest a very robust behaviour of this pathway that can also demonstrate oscillatory behaviour. These findings are of biological significance as Wnt pathway components show oscillations during vertebrate somitogenesis. 相似文献
8.
Lyons JP Mueller UW Ji H Everett C Fang X Hsieh JC Barth AM McCrea PD 《Experimental cell research》2004,298(2):369-387
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis. 相似文献
9.
The canonical Wnt signalling pathway acts by slowing the rate of ubiquitin-mediated beta-catenin degradation. This results in the accumulation and subsequent nuclear translocation of beta-catenin, which induces the expression of a number of genes involved in growth, differentiation and metabolism. The mechanisms regulating the Wnt signalling pathway in the physiological context is still not fully understood. In the present study we provide evidence that changes in glucose levels within the physiological range can acutely regulate the levels of beta-catenin in two macrophage cell lines (J774.2 and RAW264.7 cells). In particular we find that glucose induces these effects by promoting an autocrine activation of Wnt signalling that is mediated by the hexosamine pathway and changes in N-linked glycosylation of proteins. These studies reveal that the Wnt/beta-catenin system is a glucose-responsive signalling system and as such is likely to play a role in pathways involved in sensing changes in metabolic status. 相似文献
10.
Hirota M Watanabe K Hamada S Sun Y Strizzi L Mancino M Nagaoka T Gonzales M Seno M Bianco C Salomon DS 《Cellular signalling》2008,20(9):1632-1641
11.
12.
Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling 总被引:2,自引:0,他引:2
Magdesian MH Carvalho MM Mendes FA Saraiva LM Juliano MA Juliano L Garcia-Abreu J Ferreira ST 《The Journal of biological chemistry》2008,283(14):9359-9368
The amyloid-beta peptide (Abeta) plays a major role in neuronal dysfunction and neurotoxicity in Alzheimer disease. However, the signal transduction mechanisms involved in Abeta-induced neuronal dysfunction remain to be fully elucidated. A major current unknown is the identity of the protein receptor(s) involved in neuronal Abeta binding. Using phage display of peptide libraries, we have identified a number of peptides that bind Abeta and are homologous to neuronal receptors putatively involved in Abeta interactions. We report here on a cysteine-linked cyclic heptapeptide (denominated cSP5) that binds Abeta with high affinity and is homologous to the extracellular cysteine-rich domain of several members of the Frizzled (Fz) family of Wnt receptors. Based on this homology, we investigated the interaction between Abeta and Fz. The results show that Abeta binds to the Fz cysteine-rich domain at or in close proximity to the Wnt-binding site and inhibits the canonical Wnt signaling pathway. Interestingly, the cSP5 peptide completely blocks Abeta binding to Fz and prevents inhibition of Wnt signaling. These results indicate that the Abeta-binding site in Fz is homologous to cSP5 and that this is a relevant target for Abeta-instigated neurotoxicity. Furthermore, they suggest that blocking the interaction of Abeta with Fz might lead to novel therapeutic approaches to prevent neuronal dysfunction in Alzheimer disease. 相似文献
13.
14.
Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential 总被引:11,自引:0,他引:11
Murakami T Toda S Fujimoto M Ohtsuki M Byers HR Etoh T Nakagawa H 《Biochemical and biophysical research communications》2001,288(1):8-15
15.
16.
Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin
下载免费PDF全文

González-Sancho JM Brennan KR Castelo-Soccio LA Brown AM 《Molecular and cellular biology》2004,24(11):4757-4768
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway. 相似文献
17.
Gang Chen Qiqin Jiang Zhenhui You Jin Yao Lunpan Mou Xu Lin Xiaoyan Shen Tingting You Qiang Lin Junping Wen Lixiang Lin 《Molecular biology reports》2010,37(6):2773-2779
Disorders in the proliferation and apoptosis of thyrocytes may induce goitre, adenoma and carcinoma in the thyroid. The Wnt/beta-catenin pathway has been demonstrated to be involved in the regulation of cell proliferation, differentiation and apoptosis in various cell lines. The regulatory mechanism on the proliferation and differentiation of thyrocytes is not well characterized. In the present study, a GSK-3beta-targeting RNA interference (RNAi) adenovirus vector was constructed and delivered to primary human thyrocytes. Results showed that the expression of beta-catenin protein in primary human thyrocytes was increased after GSK-3beta-targeting RNAi adenovirus infection, the proliferation of primary human thyrocytes was significantly stimulated using Bromodeoxyuridine (BrdU) assay, while cell apoptosis was slightly affected which was observed through flow cytometry. It is concluded that the Wnt/beta-catenin pathway plays a significant role in the regulation of the proliferation of primary human thyrocytes. 相似文献
18.
A. V. Bayramov F. M. Eroshkin A. V. Borodulin N. Yu. Martynova G. V. Ermakova A. G. Zaraisky 《Russian Journal of Developmental Biology》2016,47(4):202-206
Noggin proteins are important regulators of the early development of the vertebrate neural system. Previously, it has been traditionally thought that vertebrates have only one noggin gene (Noggin1), whose main function is the inhibition of BMP signaling pathway during the formation of dorsoventral polarity in embryos. Then other proteins of this family were discovered, and the studies of Noggin2 protein showed that noggin proteins also participate in the modulation of Nodal/Activin and Wnt/beta-catenin signaling pathways in the early development of amphibian head structures. The purpose of this study is to investigate the properties of another noggin protein, Noggin4. We proved that Noggin4 plays an important role in the formation of head structure in clawed frog, since it inhibits the activity of Wnt/beta-catenin signaling pathway. At the same time, unlike Noggin1 and Noggin2, Noggin4 does not inhibit the activity of TGF-beta signaling pathways (BMP and Nodal/Activin). 相似文献
19.
Inhibition of proteasome activity strongly affects kiwifruit pollen germination. Involvement of the ubiquitin/proteasome pathway as a major regulator.
下载免费PDF全文

The 26S proteasome is a multicatalytic complex that acts as primary protease of the ubiquitin-mediated proteolytic pathway in eukaryotes. We provide here the first evidence that the proteasome plays a key role in regulating pollen tube growth. Immunoblotting experiments revealed the presence of high levels of free ubiquitin and ubiquitin conjugates in rehydrated and germinating pollen of kiwifruit [Actinidia deliciosa var. deliciosa (A. Chev) C. F. Liang et A. R. Ferguson]. Proteasome activity, assayed fluorometrically, accompanied the progression of germination. Specific inhibitors of proteasome function such as benzyloxycarbonyl-leucinyl-leucinyl-leucinal (MG-132), clasto-lactacystin beta-lactone, and epoxomicin significantly decreased tube growth or altered tube morphology. High-molecular mass, ubiquitinated proteins accumulated in MG-132- and beta-lactone-treated pollen, indicating that proteasome function was effectively impaired. The inhibitors were also able to decrease in vitro proteasome activity in pollen extracts. Because MG-132 can inhibit calpains, as well as the proteasome, trans-epoxy succinyl-L-leucylamido-(4-guanidino) butane (E-64), an inhibitor of cysteine proteases, was investigated. Some reduction in tube growth rate was observed, but only at 80 microM E-64, and no abnormal tubes were produced. Furthermore, no inhibition of tube growth was observed when another inhibitor of cysteine proteases, leupeptin, or inhibitors of serine and aspartic proteases (phenylmethylsulfonyl fluoride and pepstatin) were used. Our results indicate that protein turnover during tube organization and elongation in kiwifruit pollen is important, and our results also implicate the ubiquitin/26S proteasome as the major proteolytic pathway involved. 相似文献
20.
Chen Z Wang X Shao Y Shi D Chen T Cui D Jiang X 《Molecular and cellular biochemistry》2011,358(1-2):221-227
The osteogenic growth peptide (OGP) is a naturally occurring tetradecapeptide that has attracted considerable clinical interest as a bone anabolic agent and hematopoietic stimulator. In vitro studies have demonstrated that OGP directly regulates the bone marrow mesenchymal stem cells' (BMSCs) differentiation into osteoblasts. However, the exact mechanism of this process remains unknown. In the present study, we investigated the role of RhoA/ROCK signaling in differentiation along this lineage using human BMSCs. OGP treatment increased the mRNA level of bone morphogenetic protein-2 and alkaline phosphatase activity after osteogenic induction. Analysis of BMSCs induced in the presence of OGP revealed an increase in RhoA activity, and phosphorylation of FAK and cofilin. The ROCK-specific inhibitors, Y27632, blocked the OGP-induced regulation of BMSC differentiation. Taken together, these data suggest that OGP not only acts on BMSCs to stimulate osteogenic differentiation, but also in a dose-dependent manner, and this effect is mediated via the activation of RhoA/ROCK pathway. 相似文献