首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical stress and prostaglandin E2 synthesis in cartilage   总被引:1,自引:0,他引:1  
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA in which metalloproteinase (MMP) is crucial for cartilage degradation. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy-prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. Among the isoforms described, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. We investigated the regulation of the COX, PGES and 15-PGDH and MMP-2, MMP-9 and MMP-13 genes by mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) from 2 to 24 h. After determination of the PGE2 release in the media, mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blot respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time dependent manner. This was not due to the synthesis of IL-1, since pretreatment with IL1-Ra did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. MAPK are involved in signaling, since specific inhibitors partially inhibited COX-2 and mPGES-1 expressions. Lastly, compression induced MMP-2, -9, -13 mRNA expressions in cartilage. We conclude that dynamic compression induces pro-inflammatroy mediators release and matrix degradating enzymes synthesis. Notably, compression increases mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

2.
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. For both COX and PGES, three isoforms have been described: in cartilage, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. COX-3 (a variant of COX-1) and mPGES-2 have been recently cloned but little is known about their expression and regulation in cartilage, as is also the case for 15-PGDH. We investigated the regulation of the genes encoding COX and PGES isoforms during mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) for 2 to 24 hours. After determination of the amount of PGE2 released in the media (enzyme immunoassay), mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blotting respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time-dependent manner. This was not due to the synthesis of IL-1, since pretreatment with interleukin 1 receptor antagonist (IL1-Ra) did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression, whereas COX-3 and mPGES-2 mRNA expression was not modified. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours, suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. We conclude that, along with COX-2, dynamic compression induces mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

3.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

4.
In ruminants, endometrial prostaglandin F(2alpha) (PGF(2alpha)) is responsible for luteolysis and prostaglandin E(2) (PGE(2)) is thought to be involved in maternal recognition of pregnancy. In the present study, healthy uteri were collected from cows at the abattoir, and days of the estrous cycle were determined macroscopically. The uteri were classified into seven groups as Days 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, and 19-21 of the estrous cycle. Endometrial scrapings were collected. The expression of cyclooxygenase (COX)-1 and COX-2 mRNAs and proteins and PGE synthase (PGES) mRNA was analyzed by Northern and Western blot. There was no expression of COX-1, either mRNA or protein, on any day of the estrous cycle. In contrast, COX-2 mRNA and protein were expressed at low and high levels on Days 1-12 and 13-21 of the estrous cycle, respectively. The level of expression of PGES was moderate, low, and high on Days 1-3, 4-12, and 13-21 of the estrous cycle, respectively. There were significant correlations between COX-2 mRNA and protein levels and between COX-2 and PGES mRNA levels. COX-1 mRNA and protein are not expressed on any day of the estrous cycle, whereas COX-2 mRNA and protein and PGES mRNA are differentially expressed and regulated in bovine endometrium during the estrous cycle. COX-2, rather than COX-1, is the primary isoenzyme involved in the endometrial production of prostaglandins, and the COX-2 and PGES pathway is responsible for the endometrial production of PGE(2) in the bovine endometrium during the estrous cycle.  相似文献   

5.
6.
7.
8.
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-dependent oxidation of 15(S)-hydroxyl group of prostaglandins and has been considered a key enzyme involved in biological inactivation of prostaglandins. This enzyme is markedly induced by androgens in hormone-sensitive human prostate cancer cells (Tong M., Tai H. H. Biochem Biophys Res Commun 2000; 276: 77-81) and may be involved in tumorigenesis. Inhibition of this enzyme may be of value in anticancer therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit cyclooxygenases (COXs) have been shown to be chemopreventive in epidemiological and animal-model studies. However, chemoprevention by these drugs may not be directly related to their inhibition of COXs. Other targets may be also involved in their chemopreventive activity. We have examined a variety of NSAIDs including COX-2 selective inhibitors, peroxisome proliferator-activated receptor (PPAR) gamma agonists and phytophenolic compounds which have been shown to be chemopreventive for their effect on 15-PGDH. It was found that most of these compounds were potent inhibitors of 15-PGDH. Among these compounds, ciglitazone appeared to be the most powerful inhibitor (IC(50)=2.7 microM). Inhibition by ciglitazone was non-competitive with respect to NAD(+) and uncompetitive with respect to PGE(2).  相似文献   

9.
10.
11.
12.
The expression of the human cholecystokinin-2/gastrin receptor (CCK-2R) has been widely reported in human colorectal cancers. Recently, a splice variant of the CCK-2R retaining intron 4 (CCK-2i4svR) has been cloned from human colorectal cancers and postulated to exhibit constitutive activity. But its role in mediating carcinogenic effects of mature-amidated gastrin in colorectal cancers has not been fully explored. The purpose of the present study was to determine whether the activation of CCK-2i4svR by gastrin transactivates the COX-2 promoter in human colon cancer cells and in COS-7 cells. In this study, Colo320 cells and COS-7 cells were transfected with the human CCK-2R wild type (CCK-2wtR) (COS-7WT, Colo320WT) and the human CCK-2i4svR (COS-7SV, Colo320SV) cDNA. After stimulation with gastrin-17 (G-17), transactivation of the COX-2 promoter was determined by luciferase reporter gene assay. 5'deletions of the COX-2 promoter were transfected into Colo320 cells to narrow down the minimally required regulatory element. Induction of COX-2 expression was further explored at the mRNA level using real time RT-PCR. The effects of CCK-2i4svR activation on phosphorylation of ERK1/2, p38(MAPK) and JNK were examined by using immunoblotting. Prostaglandin E(2) (PGE(2)) secretion was measured by ELISA. Our results showed that gastrin transactivates the COX-2 promoter in both Colo320 cells and COS-7 cells expressing the CCK-2i4svR cDNA. Inhibition of p38(MAPK) pathway using specific inhibitor significantly blocked the gastrin-induced COX-2 transactivation. Gastrin time-dependently increased COX-2 mRNA expression, the peak mRNA levels appeared at 10 h after stimulation. PGE(2) secretion from gastrin-treated cells increased significantly 8 h after stimulation. Treatment with gastrin also stimulated PGE(2) secretion in the Colo320 cells expressing CCK-2i4svR. In conclusion, the CCK-2i4svR mediates transactivation of the COX-2 promoter and MAPK pathway is involved in this process.  相似文献   

13.
We previously showed that cytosolic prostaglandin (PG) E synthase (cPGES/p23) which isomerizes PGH(2) to PGE(2), is essential for fetal mouse development. Embryonic fibroblasts derived from cPGES/p23 knockout mice generated higher amounts of PGE(2) in culture supernatants than wild-type-derived cells. In order to elucidate this apparent conflict that absence of PGE(2) synthetic enzyme caused facilitation of PGE(2) biosynthesis, we examined expression of the PGE(2) degrading enzyme in embryonic fibroblasts. We report here that embryonic fibroblasts deficient in cPGES/p23 decreased the expression of the PGE(2) degrading enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which catalyzes the inactivating conversion of the PGE(2) 15-OH to a 15-keto group, compared with that of wild-type. In addition, rat fibroblastic 3Y1 cells harboring cPGES/p23 siRNA exhibited lower 15-PGDH expression than mock-transfected cells. Furthermore, forcible expression of cPGES/p23 in 3Y1 cells resulted in facilitation of 15-PGDH promoter activity. These results suggest that the PGE(2)-inactivating pathway is controlled by the PGE(2) biosynthetic enzyme, cPGES/p23.  相似文献   

14.
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostaglandin (PG) synthesis enzymes, the cyclooxygenases (COX-1 and 2). It is suggested that these enzymes are not their only targets. We reported that in tumoral TT cell, indomethacin, in vivo and in vitro, decreases proliferation and increases activity of 15-hydroxyprostaglandin-dehydrogenase (15-PGDH), the PG catabolism key enzyme. Here, we show that the COX-1 inhibitors, selective or not, and sulindac sulfone, a non-COX inhibitor, increased 15-PGDH activity and reduced PGE2 levels. This increase was negatively correlated to the decrease in cell proliferation and suggested that 15-PGDH could be implicated in NSAIDs anti-proliferative effect. Indeed, the silencing of 15-PGDH expression by RNA interference using 15-PGDH specific siRNA enhanced TT cell proliferation and abolished the anti-proliferative effect of a representative non-selective inhibitor, ibuprofen. Moreover, a specific inhibitor of 15-PGDH activity, CAY 10397, completely reversed the effect of ibuprofen on proliferation. Consequently our results demonstrate that, at least in TT cells, 15-PGDH is implicated in proliferation and could be a target for COX-1 inhibitors specific or not. NSAIDs defined by their COX inhibition should also be defined by their effect on 15-PGDH.  相似文献   

15.
Past studies of uterine prostaglandin (PGs) and pig reproduction have focused on endometrial rather than myometrial PGs. This study documents the synthesis and secretion of myometrial prostaglandins (PGs) in pigs and the involvement of oxytocin (OT) in these processes. Cyclooxygenase-2 (COX-2) expression was similar in myometrial explants from cyclic and pregnant pigs (days 14-16) and OT (10(-7) M) in vitro significantly increased COX-2 protein regardless of reproductive state. Basal expression of prostaglandin E2 synthase (PGES) was higher during pregnancy than during luteolysis. Conversely, prostaglandin F synthase (PGFS) was highest during luteolysis and lower in myometrium from gravid animals. OT had no influence on the expression of PGES and PGFS. In another tissue culture experiment, myometrial slices produced more PGE2 than PGF2alpha regardless of reproductive state of the female. OT stimulated PGE2 production in myometrium harvested during luteolysis and increased PGF2alpha production in all tissues examined. Progesterone (P4; 10(-5) M) blocked stimulatory effect of OT on myometrial PG release. Myometrial OTr mRNA was higher (P=0.03) during luteolysis than during pregnancy. In conclusion: (1) oxytocin increases myometrial COX-2 expression, but does not influence the expression of terminal enzymes of PGs synthesis (PGES and PGFS); (2) porcine myometrium preferentially produces PGs during early pregnancy and secretes more PGE2 than PGF2alpha; (3) myometrial OT and OTr support secretion of PGs from myometrium during luteolysis.  相似文献   

16.
Current evidence suggests that two forms of prostaglandin (PG) E synthase (PGES), cytosolic PGES and membrane-bound PGES (mPGES) -1, preferentially lie downstream of cyclooxygenase (COX) -1 and -2, respectively, in the PGE2 biosynthetic pathway. In this study, we examined the expression and functional aspects of the third PGES enzyme, mPGES-2, in mammalian cells and tissues. mPGES-2 was synthesized as a Golgi membrane-associated protein, and spontaneous cleavage of the N-terminal hydrophobic domain led to the formation of a truncated mature protein that was distributed in the cytosol with a trend to be enriched in the perinuclear region. In several cell lines, mPGES-2 promoted PGE2 production via both COX-1 and COX-2 in the immediate and delayed responses with modest COX-2 preference. In contrast to the marked inducibility of mPGES-1, mPGES-2 was constitutively expressed in various cells and tissues and was not increased appreciably during tissue inflammation or damage. Interestingly, a considerable elevation of mPGES-2 expression was observed in human colorectal cancer. Collectively, mPGES-2 is a unique PGES that can be coupled with both COXs and may play a role in the production of the PGE2 involved in both tissue homeostasis and disease.  相似文献   

17.
The synthesis of PGE(2), the major vasodilator prostanoid of the ductus arteriosus (DA), is catalyzed by PGE(2) synthases (PGES). The factors implicated in increased PGE(2) synthesis in the perinatal DA are not known. We studied the developmental changes of PGES along with that of cyclooxygenase (COX)-2 and cytosolic phospholipase A(2) (cPLA(2)) in the DA of fetal (75-90% gestation) and immediately postnatal newborn (NB) piglets. Levels of microsomal PGES (mPGES), COX-2, and PGE(2) in the DA of NB were approximately 7-fold higher than in fetus; activities of cytosolic PGES (cPGES) and cPLA(2) in DA of the fetus and NB did not differ. Because platelet-activating factor (PAF) could regulate COX-2 expression, the former was measured and found to be more abundant in the DA of the NB than of fetus. PAF elicited an increase in mPGES, COX-2, and PGE(2) in fetal DA to levels approaching those of the NB; cPGES, cPLA(2), and COX-1 were unaffected. In perinatal NB DA, PAF receptor antagonists BN-52021 and THG-315 reduced mPGES, COX-2, and PGE(2) levels and were associated with increased DA tone. It is concluded that PAF contributes in regulating DA tone by governing mPGES, COX-2, and ensuing PGE(2) levels in the perinate.  相似文献   

18.
15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-linked oxidation of 15 (S)-hydroxyl group of prostaglandins and lipoxins and is the key enzyme responsible for the biological inactivation of these eicosanoids. The enzyme was found to be under-expressed as opposed to cyclooxygenase-2 (COX-2) being over-expressed in lung and other tumors. A549 human lung adenocarcinoma cells were used as a model system to study the role of 15-PGDH in lung tumorigenesis. Up-regulation of COX-2 expression by pro-inflammatory cytokines in A549 cells was accompanied by a down-regulation of 15-PGDH expression. Over-expression of COX-2 but not COX-1 by adenoviral-mediated approach also attenuated 15-PGDH expression. Similarly, over-expression of 15-PGDH by the same strategy inhibited IL-1beta-induced COX-2 expression. It appears that the expression of COX-2 and 15-PGDH is regulated reciprocally. Adenoviral-mediated transient over-expression of 15-PGDH in A549 cells resulted in apoptosis. Xenograft studies in nude mice also showed tumor suppression with cells transiently over-expressing 15-PGDH. However, cells stably over-expressing 15-PGDH generated tumors faster than those control cells. Examination of different clones of A549 cells stably expressing different levels of 15-PGDH indicated that the levels of 15-PGDH expression correlated positively with those of mesenchymal markers, and negatively with those of epithelial markers. It appears that the stable expression of 15-PGDH induces epithelial-mesenchymal transition (EMT) which may account for the tumor promotion in xenograft studies. A number of anti-cancer agents, such as transforming growth factor-beta1 (TGF-beta1), glucocorticoids and some histone deacetylase inhibitors were found to induce 15-PGDH expression. These results suggest that tumor suppressive action of these agents may, in part, be related to their ability to induce 15-PGDH expression.  相似文献   

19.
To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to >or=90% with a potency similar to that of recombinant rat mPGES-1 (IC(50) = 2.4 microM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE(2) production. Prostacyclin (measured as 6-keto-PGF(1alpha)) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE(2) in this model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号